Esempio n. 1
0
def main():
    args_parser = argparse.ArgumentParser(description='Tuning with graph-based parsing')
    args_parser.add_argument('--test_phase', action='store_true', help='Load trained model and run testing phase.')
    args_parser.add_argument('--mode', choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'], help='architecture of rnn', required=True)
    args_parser.add_argument('--cuda', action='store_true', help='using GPU')
    args_parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs')
    args_parser.add_argument('--batch_size', type=int, default=64, help='Number of sentences in each batch')
    args_parser.add_argument('--hidden_size', type=int, default=256, help='Number of hidden units in RNN')
    args_parser.add_argument('--arc_space', type=int, default=128, help='Dimension of tag space')
    args_parser.add_argument('--type_space', type=int, default=128, help='Dimension of tag space')
    args_parser.add_argument('--num_layers', type=int, default=1, help='Number of layers of RNN')
    args_parser.add_argument('--num_filters', type=int, default=50, help='Number of filters in CNN')
    args_parser.add_argument('--pos', action='store_true', help='use part-of-speech embedding.')
    args_parser.add_argument('--char', action='store_true', help='use character embedding and CNN.')
    args_parser.add_argument('--pos_dim', type=int, default=50, help='Dimension of POS embeddings')
    args_parser.add_argument('--char_dim', type=int, default=50, help='Dimension of Character embeddings')
    args_parser.add_argument('--opt', choices=['adam', 'sgd', 'adamax'], help='optimization algorithm')
    args_parser.add_argument('--objective', choices=['cross_entropy', 'crf'], default='cross_entropy', help='objective function of training procedure.')
    args_parser.add_argument('--decode', choices=['mst', 'greedy'], help='decoding algorithm', required=True)
    args_parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate')
    args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate')
    args_parser.add_argument('--clip', type=float, default=5.0, help='gradient clipping')
    args_parser.add_argument('--gamma', type=float, default=0.0, help='weight for regularization')
    args_parser.add_argument('--epsilon', type=float, default=1e-8, help='epsilon for adam or adamax')
    args_parser.add_argument('--p_rnn', nargs=2, type=float, required=True, help='dropout rate for RNN')
    args_parser.add_argument('--p_in', type=float, default=0.33, help='dropout rate for input embeddings')
    args_parser.add_argument('--p_out', type=float, default=0.33, help='dropout rate for output layer')
    args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay')
    args_parser.add_argument('--unk_replace', type=float, default=0., help='The rate to replace a singleton word with UNK')
    args_parser.add_argument('--punctuation', nargs='+', type=str, help='List of punctuations')
    args_parser.add_argument('--word_embedding', choices=['glove', 'senna', 'sskip', 'polyglot'], help='Embedding for words', required=True)
    args_parser.add_argument('--word_path', help='path for word embedding dict')
    args_parser.add_argument('--freeze', action='store_true', help='frozen the word embedding (disable fine-tuning).')
    args_parser.add_argument('--char_embedding', choices=['random', 'polyglot'], help='Embedding for characters', required=True)
    args_parser.add_argument('--char_path', help='path for character embedding dict')
    args_parser.add_argument('--train')  # "data/POS-penn/wsj/split1/wsj1.train.original"
    args_parser.add_argument('--dev')  # "data/POS-penn/wsj/split1/wsj1.dev.original"
    args_parser.add_argument('--test')  # "data/POS-penn/wsj/split1/wsj1.test.original"
    args_parser.add_argument('--model_path', help='path for saving model file.', required=True)
    args_parser.add_argument('--model_name', help='name for saving model file.', required=True)

    args = args_parser.parse_args()

    logger = get_logger("GraphParser")

    mode = args.mode
    obj = args.objective
    decoding = args.decode
    train_path = args.train
    dev_path = args.dev
    test_path = args.test
    model_path = args.model_path
    model_name = args.model_name
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    hidden_size = args.hidden_size
    arc_space = args.arc_space
    type_space = args.type_space
    num_layers = args.num_layers
    num_filters = args.num_filters
    learning_rate = args.learning_rate
    opt = args.opt
    momentum = 0.9
    betas = (0.9, 0.9)
    eps = args.epsilon
    decay_rate = args.decay_rate
    clip = args.clip
    gamma = args.gamma
    schedule = args.schedule
    p_rnn = tuple(args.p_rnn)
    p_in = args.p_in
    p_out = args.p_out
    unk_replace = args.unk_replace
    punctuation = args.punctuation

    freeze = args.freeze
    word_embedding = args.word_embedding
    word_path = args.word_path

    use_char = args.char
    char_embedding = args.char_embedding
    char_path = args.char_path

    use_pos = args.pos
    pos_dim = args.pos_dim
    word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path)
    char_dict = None
    char_dim = args.char_dim
    if char_embedding != 'random':
        char_dict, char_dim = utils.load_embedding_dict(char_embedding, char_path)

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(model_path, 'alphabets/')
    model_name = os.path.join(model_path, model_name)
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(alphabet_path, train_path, data_paths=[dev_path, test_path],
                                                                                             max_vocabulary_size=100000, embedd_dict=word_dict)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    logger.info("Reading Data")
    device = torch.device('cuda') if args.cuda else torch.device('cpu')

    data_train = conllx_data.read_data_to_tensor(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device)
    # data_train = conllx_data.read_data(train_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet)
    # num_data = sum([len(bucket) for bucket in data_train])
    num_data = sum(data_train[1])

    data_dev = conllx_data.read_data_to_tensor(dev_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device)
    data_test = conllx_data.read_data_to_tensor(test_path, word_alphabet, char_alphabet, pos_alphabet, type_alphabet, symbolic_root=True, device=device)

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" % (len(punct_set), ' '.join(punct_set)))

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / word_dim)
        table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in word_dict:
                embedding = word_dict[word]
            elif word.lower() in word_dict:
                embedding = word_dict[word.lower()]
            else:
                embedding = np.zeros([1, word_dim]).astype(np.float32) if freeze else np.random.uniform(-scale, scale, [1, word_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('word OOV: %d' % oov)
        return torch.from_numpy(table)

    def construct_char_embedding_table():
        if char_dict is None:
            return None

        scale = np.sqrt(3.0 / char_dim)
        table = np.empty([num_chars, char_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32)
        oov = 0
        for char, index, in char_alphabet.items():
            if char in char_dict:
                embedding = char_dict[char]
            else:
                embedding = np.random.uniform(-scale, scale, [1, char_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('character OOV: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table()
    char_table = construct_char_embedding_table()

    window = 3
    if obj == 'cross_entropy':
        network = BiRecurrentConvBiAffine(word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window,
                                          mode, hidden_size, num_layers, num_types, arc_space, type_space,
                                          embedd_word=word_table, embedd_char=char_table,
                                          p_in=p_in, p_out=p_out, p_rnn=p_rnn, biaffine=True, pos=use_pos, char=use_char)
    elif obj == 'crf':
        raise NotImplementedError
    else:
        raise RuntimeError('Unknown objective: %s' % obj)

    def save_args():
        arg_path = model_name + '.arg.json'
        arguments = [word_dim, num_words, char_dim, num_chars, pos_dim, num_pos, num_filters, window,
                     mode, hidden_size, num_layers, num_types, arc_space, type_space]
        kwargs = {'p_in': p_in, 'p_out': p_out, 'p_rnn': p_rnn, 'biaffine': True, 'pos': use_pos, 'char': use_char}
        json.dump({'args': arguments, 'kwargs': kwargs}, open(arg_path, 'w'), indent=4)

    if freeze:
        freeze_embedding(network.word_embedd)

    network = network.to(device)

    save_args()

    pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet)
    gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet, type_alphabet)

    def generate_optimizer(opt, lr, params):
        params = filter(lambda param: param.requires_grad, params)
        if opt == 'adam':
            return Adam(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps)
        elif opt == 'sgd':
            return SGD(params, lr=lr, momentum=momentum, weight_decay=gamma, nesterov=True)
        elif opt == 'adamax':
            return Adamax(params, lr=lr, betas=betas, weight_decay=gamma, eps=eps)
        else:
            raise ValueError('Unknown optimization algorithm: %s' % opt)

    lr = learning_rate
    optim = generate_optimizer(opt, lr, network.parameters())
    opt_info = 'opt: %s, ' % opt
    if opt == 'adam':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)
    elif opt == 'sgd':
        opt_info += 'momentum=%.2f' % momentum
    elif opt == 'adamax':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)

    word_status = 'frozen' if freeze else 'fine tune'
    char_status = 'enabled' if use_char else 'disabled'
    pos_status = 'enabled' if use_pos else 'disabled'
    logger.info("Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" % (word_dim, word_status, char_dim, char_status, pos_dim, pos_status))
    logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window))
    logger.info("RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" % (mode, num_layers, hidden_size, arc_space, type_space))
    logger.info("train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)" % (obj, gamma, num_data, batch_size, clip, unk_replace))
    logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" % (p_in, p_out, p_rnn))
    logger.info("decoding algorithm: %s" % decoding)
    logger.info(opt_info)

    num_batches = num_data / batch_size + 1
    dev_ucorrect = 0.0
    dev_lcorrect = 0.0
    dev_ucomlpete_match = 0.0
    dev_lcomplete_match = 0.0

    dev_ucorrect_nopunc = 0.0
    dev_lcorrect_nopunc = 0.0
    dev_ucomlpete_match_nopunc = 0.0
    dev_lcomplete_match_nopunc = 0.0
    dev_root_correct = 0.0

    best_epoch = 0

    test_ucorrect = 0.0
    test_lcorrect = 0.0
    test_ucomlpete_match = 0.0
    test_lcomplete_match = 0.0

    test_ucorrect_nopunc = 0.0
    test_lcorrect_nopunc = 0.0
    test_ucomlpete_match_nopunc = 0.0
    test_lcomplete_match_nopunc = 0.0
    test_root_correct = 0.0
    test_total = 0
    test_total_nopunc = 0
    test_total_inst = 0
    test_total_root = 0

    if decoding == 'greedy':
        decode = network.decode
    elif decoding == 'mst':
        decode = network.decode_mst
    else:
        raise ValueError('Unknown decoding algorithm: %s' % decoding)

    patient = 0
    decay = 0
    max_decay = 9
    double_schedule_decay = 5

    for epoch in range(1, num_epochs + 1):
        print('Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): ' % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay))
        train_err = 0.
        train_err_arc = 0.
        train_err_type = 0.
        train_total = 0.
        start_time = time.time()
        num_back = 0
        network.train()
        for batch in range(1, num_batches + 1):
            word, char, pos, heads, types, masks, lengths = conllx_data.get_batch_tensor(data_train, batch_size, unk_replace=unk_replace)

            optim.zero_grad()
            loss_arc, loss_type = network.loss(word, char, pos, heads, types, mask=masks, length=lengths)
            loss = loss_arc + loss_type
            loss.backward()
            clip_grad_norm_(network.parameters(), clip)
            optim.step()

            with torch.no_grad():
                num_inst = word.size(0) if obj == 'crf' else masks.sum() - word.size(0)
                train_err += loss * num_inst
                train_err_arc += loss_arc * num_inst
                train_err_type += loss_type * num_inst
                train_total += num_inst

            time_ave = (time.time() - start_time) / batch
            time_left = (num_batches - batch) * time_ave

            # update log
            if batch % 10 == 0:
                sys.stdout.write("\b" * num_back)
                sys.stdout.write(" " * num_back)
                sys.stdout.write("\b" * num_back)
                log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, time left: %.2fs' % (batch, num_batches, train_err / train_total,
                                                                                                 train_err_arc / train_total, train_err_type / train_total, time_left)
                sys.stdout.write(log_info)
                sys.stdout.flush()
                num_back = len(log_info)

        sys.stdout.write("\b" * num_back)
        sys.stdout.write(" " * num_back)
        sys.stdout.write("\b" * num_back)
        print('train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs' % (num_batches, train_err / train_total,
                                                                            train_err_arc / train_total, train_err_type / train_total, time.time() - start_time))

        # evaluate performance on dev data
        with torch.no_grad():
            network.eval()
            pred_filename = 'tmp/%spred_dev%d' % (str(uid), epoch)
            pred_writer.start(pred_filename)
            gold_filename = 'tmp/%sgold_dev%d' % (str(uid), epoch)
            gold_writer.start(gold_filename)

            dev_ucorr = 0.0
            dev_lcorr = 0.0
            dev_total = 0
            dev_ucomlpete = 0.0
            dev_lcomplete = 0.0
            dev_ucorr_nopunc = 0.0
            dev_lcorr_nopunc = 0.0
            dev_total_nopunc = 0
            dev_ucomlpete_nopunc = 0.0
            dev_lcomplete_nopunc = 0.0
            dev_root_corr = 0.0
            dev_total_root = 0.0
            dev_total_inst = 0.0
            for batch in conllx_data.iterate_batch_tensor(data_dev, batch_size):
                word, char, pos, heads, types, masks, lengths = batch
                heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS)
                word = word.cpu().numpy()
                pos = pos.cpu().numpy()
                lengths = lengths.cpu().numpy()
                heads = heads.cpu().numpy()
                types = types.cpu().numpy()

                pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True)
                gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True)

                stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types,
                                                                        word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True)
                ucorr, lcorr, total, ucm, lcm = stats
                ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
                corr_root, total_root = stats_root

                dev_ucorr += ucorr
                dev_lcorr += lcorr
                dev_total += total
                dev_ucomlpete += ucm
                dev_lcomplete += lcm

                dev_ucorr_nopunc += ucorr_nopunc
                dev_lcorr_nopunc += lcorr_nopunc
                dev_total_nopunc += total_nopunc
                dev_ucomlpete_nopunc += ucm_nopunc
                dev_lcomplete_nopunc += lcm_nopunc

                dev_root_corr += corr_root
                dev_total_root += total_root

                dev_total_inst += num_inst

            pred_writer.close()
            gold_writer.close()
            print('W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (
                dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 / dev_total, dev_lcorr * 100 / dev_total,
                dev_ucomlpete * 100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst))
            print('Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%' % (
                dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc, dev_ucorr_nopunc * 100 / dev_total_nopunc,
                dev_lcorr_nopunc * 100 / dev_total_nopunc,
                dev_ucomlpete_nopunc * 100 / dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst))
            print('Root: corr: %d, total: %d, acc: %.2f%%' %(dev_root_corr, dev_total_root, dev_root_corr * 100 / dev_total_root))

            if dev_lcorrect_nopunc < dev_lcorr_nopunc or (dev_lcorrect_nopunc == dev_lcorr_nopunc and dev_ucorrect_nopunc < dev_ucorr_nopunc):
                dev_ucorrect_nopunc = dev_ucorr_nopunc
                dev_lcorrect_nopunc = dev_lcorr_nopunc
                dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc
                dev_lcomplete_match_nopunc = dev_lcomplete_nopunc

                dev_ucorrect = dev_ucorr
                dev_lcorrect = dev_lcorr
                dev_ucomlpete_match = dev_ucomlpete
                dev_lcomplete_match = dev_lcomplete

                dev_root_correct = dev_root_corr

                best_epoch = epoch
                patient = 0
                # torch.save(network, model_name)
                torch.save(network.state_dict(), model_name)

                pred_filename = 'tmp/%spred_test%d' % (str(uid), epoch)
                pred_writer.start(pred_filename)
                gold_filename = 'tmp/%sgold_test%d' % (str(uid), epoch)
                gold_writer.start(gold_filename)

                test_ucorrect = 0.0
                test_lcorrect = 0.0
                test_ucomlpete_match = 0.0
                test_lcomplete_match = 0.0
                test_total = 0

                test_ucorrect_nopunc = 0.0
                test_lcorrect_nopunc = 0.0
                test_ucomlpete_match_nopunc = 0.0
                test_lcomplete_match_nopunc = 0.0
                test_total_nopunc = 0
                test_total_inst = 0

                test_root_correct = 0.0
                test_total_root = 0
                for batch in conllx_data.iterate_batch_tensor(data_test, batch_size):
                    word, char, pos, heads, types, masks, lengths = batch
                    heads_pred, types_pred = decode(word, char, pos, mask=masks, length=lengths, leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS)
                    word = word.cpu().numpy()
                    pos = pos.cpu().numpy()
                    lengths = lengths.cpu().numpy()
                    heads = heads.cpu().numpy()
                    types = types.cpu().numpy()

                    pred_writer.write(word, pos, heads_pred, types_pred, lengths, symbolic_root=True)
                    gold_writer.write(word, pos, heads, types, lengths, symbolic_root=True)

                    stats, stats_nopunc, stats_root, num_inst = parser.eval(word, pos, heads_pred, types_pred, heads, types,
                                                                            word_alphabet, pos_alphabet, lengths, punct_set=punct_set, symbolic_root=True)
                    ucorr, lcorr, total, ucm, lcm = stats
                    ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
                    corr_root, total_root = stats_root

                    test_ucorrect += ucorr
                    test_lcorrect += lcorr
                    test_total += total
                    test_ucomlpete_match += ucm
                    test_lcomplete_match += lcm

                    test_ucorrect_nopunc += ucorr_nopunc
                    test_lcorrect_nopunc += lcorr_nopunc
                    test_total_nopunc += total_nopunc
                    test_ucomlpete_match_nopunc += ucm_nopunc
                    test_lcomplete_match_nopunc += lcm_nopunc

                    test_root_correct += corr_root
                    test_total_root += total_root

                    test_total_inst += num_inst

                pred_writer.close()
                gold_writer.close()
            else:
                if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule:
                    # network = torch.load(model_name)
                    network.load_state_dict(torch.load(model_name))
                    lr = lr * decay_rate
                    optim = generate_optimizer(opt, lr, network.parameters())

                    if decoding == 'greedy':
                        decode = network.decode
                    elif decoding == 'mst':
                        decode = network.decode_mst
                    else:
                        raise ValueError('Unknown decoding algorithm: %s' % decoding)

                    patient = 0
                    decay += 1
                    if decay % double_schedule_decay == 0:
                        schedule *= 2
                else:
                    patient += 1

            print('----------------------------------------------------------------------------------------------------------------------------')
            print('best dev  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
                dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 / dev_total, dev_lcorrect * 100 / dev_total,
                dev_ucomlpete_match * 100 / dev_total_inst, dev_lcomplete_match * 100 / dev_total_inst,
                best_epoch))
            print('best dev  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
                dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc,
                dev_ucorrect_nopunc * 100 / dev_total_nopunc, dev_lcorrect_nopunc * 100 / dev_total_nopunc,
                dev_ucomlpete_match_nopunc * 100 / dev_total_inst, dev_lcomplete_match_nopunc * 100 / dev_total_inst,
                best_epoch))
            print('best dev  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (
                dev_root_correct, dev_total_root, dev_root_correct * 100 / dev_total_root, best_epoch))
            print('----------------------------------------------------------------------------------------------------------------------------')
            print('best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
                test_ucorrect, test_lcorrect, test_total, test_ucorrect * 100 / test_total, test_lcorrect * 100 / test_total,
                test_ucomlpete_match * 100 / test_total_inst, test_lcomplete_match * 100 / test_total_inst,
                best_epoch))
            print('best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)' % (
                test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc,
                test_ucorrect_nopunc * 100 / test_total_nopunc, test_lcorrect_nopunc * 100 / test_total_nopunc,
                test_ucomlpete_match_nopunc * 100 / test_total_inst, test_lcomplete_match_nopunc * 100 / test_total_inst,
                best_epoch))
            print('best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)' % (
                test_root_correct, test_total_root, test_root_correct * 100 / test_total_root, best_epoch))
            print('============================================================================================================================')

            if decay == max_decay:
                break
def main():
    args_parser = argparse.ArgumentParser(
        description='Tuning with graph-based parsing')
    args_parser.register('type', 'bool', str2bool)

    args_parser.add_argument('--seed',
                             type=int,
                             default=1234,
                             help='random seed for reproducibility')
    args_parser.add_argument('--mode',
                             choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'],
                             help='architecture of rnn',
                             required=True)
    args_parser.add_argument('--num_epochs',
                             type=int,
                             default=1000,
                             help='Number of training epochs')
    args_parser.add_argument('--batch_size',
                             type=int,
                             default=64,
                             help='Number of sentences in each batch')
    args_parser.add_argument('--hidden_size',
                             type=int,
                             default=256,
                             help='Number of hidden units in RNN')
    args_parser.add_argument('--arc_space',
                             type=int,
                             default=128,
                             help='Dimension of tag space')
    args_parser.add_argument('--type_space',
                             type=int,
                             default=128,
                             help='Dimension of tag space')
    args_parser.add_argument('--num_layers',
                             type=int,
                             default=1,
                             help='Number of layers of encoder.')
    args_parser.add_argument('--num_filters',
                             type=int,
                             default=50,
                             help='Number of filters in CNN')
    args_parser.add_argument('--pos',
                             action='store_true',
                             help='use part-of-speech embedding.')
    args_parser.add_argument('--char',
                             action='store_true',
                             help='use character embedding and CNN.')
    args_parser.add_argument('--pos_dim',
                             type=int,
                             default=50,
                             help='Dimension of POS embeddings')
    args_parser.add_argument('--char_dim',
                             type=int,
                             default=50,
                             help='Dimension of Character embeddings')
    args_parser.add_argument('--opt',
                             choices=['adam', 'sgd', 'adamax'],
                             help='optimization algorithm')
    args_parser.add_argument('--objective',
                             choices=['cross_entropy', 'crf'],
                             default='cross_entropy',
                             help='objective function of training procedure.')
    args_parser.add_argument('--decode',
                             choices=['mst', 'greedy'],
                             default='mst',
                             help='decoding algorithm')
    args_parser.add_argument('--learning_rate',
                             type=float,
                             default=0.01,
                             help='Learning rate')
    # args_parser.add_argument('--decay_rate', type=float, default=0.05, help='Decay rate of learning rate')
    args_parser.add_argument('--clip',
                             type=float,
                             default=5.0,
                             help='gradient clipping')
    args_parser.add_argument('--gamma',
                             type=float,
                             default=0.0,
                             help='weight for regularization')
    args_parser.add_argument('--epsilon',
                             type=float,
                             default=1e-8,
                             help='epsilon for adam or adamax')
    args_parser.add_argument('--p_rnn',
                             nargs='+',
                             type=float,
                             required=True,
                             help='dropout rate for RNN')
    args_parser.add_argument('--p_in',
                             type=float,
                             default=0.33,
                             help='dropout rate for input embeddings')
    args_parser.add_argument('--p_out',
                             type=float,
                             default=0.33,
                             help='dropout rate for output layer')
    # args_parser.add_argument('--schedule', type=int, help='schedule for learning rate decay')
    args_parser.add_argument(
        '--unk_replace',
        type=float,
        default=0.,
        help='The rate to replace a singleton word with UNK')
    args_parser.add_argument('--punctuation',
                             nargs='+',
                             type=str,
                             help='List of punctuations')
    args_parser.add_argument(
        '--word_embedding',
        choices=['word2vec', 'glove', 'senna', 'sskip', 'polyglot'],
        help='Embedding for words',
        required=True)
    args_parser.add_argument('--word_path',
                             help='path for word embedding dict')
    args_parser.add_argument(
        '--freeze',
        action='store_true',
        help='frozen the word embedding (disable fine-tuning).')
    args_parser.add_argument('--char_embedding',
                             choices=['random', 'polyglot'],
                             help='Embedding for characters',
                             required=True)
    args_parser.add_argument('--char_path',
                             help='path for character embedding dict')
    args_parser.add_argument('--data_dir', help='Data directory path')
    args_parser.add_argument(
        '--src_lang',
        required=True,
        help='Src language to train dependency parsing model')
    args_parser.add_argument('--aux_lang',
                             nargs='+',
                             help='Language names for adversarial training')
    args_parser.add_argument('--vocab_path',
                             help='path for prebuilt alphabets.',
                             default=None)
    args_parser.add_argument('--model_path',
                             help='path for saving model file.',
                             required=True)
    args_parser.add_argument('--model_name',
                             help='name for saving model file.',
                             required=True)
    #
    args_parser.add_argument('--attn_on_rnn',
                             action='store_true',
                             help='use self-attention on top of context RNN.')
    args_parser.add_argument('--no_word',
                             type='bool',
                             default=False,
                             help='do not use word embedding.')
    args_parser.add_argument('--use_bert',
                             type='bool',
                             default=False,
                             help='use multilingual BERT.')
    #
    # lrate schedule with warmup in the first iter.
    args_parser.add_argument('--use_warmup_schedule',
                             type='bool',
                             default=False,
                             help="Use warmup lrate schedule.")
    args_parser.add_argument('--decay_rate',
                             type=float,
                             default=0.75,
                             help='Decay rate of learning rate')
    args_parser.add_argument('--max_decay',
                             type=int,
                             default=9,
                             help='Number of decays before stop')
    args_parser.add_argument('--schedule',
                             type=int,
                             help='schedule for learning rate decay')
    args_parser.add_argument('--double_schedule_decay',
                             type=int,
                             default=5,
                             help='Number of decays to double schedule')
    args_parser.add_argument(
        '--check_dev',
        type=int,
        default=5,
        help='Check development performance in every n\'th iteration')
    # encoder selection
    args_parser.add_argument('--encoder_type',
                             choices=['Transformer', 'RNN', 'SelfAttn'],
                             default='RNN',
                             help='do not use context RNN.')
    args_parser.add_argument(
        '--pool_type',
        default='mean',
        choices=['max', 'mean', 'weight'],
        help='pool type to form fixed length vector from word embeddings')
    # Tansformer encoder
    args_parser.add_argument(
        '--trans_hid_size',
        type=int,
        default=1024,
        help='#hidden units in point-wise feed-forward in transformer')
    args_parser.add_argument(
        '--d_k',
        type=int,
        default=64,
        help='d_k for multi-head-attention in transformer encoder')
    args_parser.add_argument(
        '--d_v',
        type=int,
        default=64,
        help='d_v for multi-head-attention in transformer encoder')
    args_parser.add_argument('--num_head',
                             type=int,
                             default=8,
                             help='Value of h in multi-head attention')
    args_parser.add_argument(
        '--use_all_encoder_layers',
        type='bool',
        default=False,
        help='Use a weighted representations of all encoder layers')
    # - positional
    args_parser.add_argument(
        '--enc_use_neg_dist',
        action='store_true',
        help="Use negative distance for enc's relational-distance embedding.")
    args_parser.add_argument(
        '--enc_clip_dist',
        type=int,
        default=0,
        help="The clipping distance for relative position features.")
    args_parser.add_argument('--position_dim',
                             type=int,
                             default=50,
                             help='Dimension of Position embeddings.')
    args_parser.add_argument(
        '--position_embed_num',
        type=int,
        default=200,
        help=
        'Minimum value of position embedding num, which usually is max-sent-length.'
    )
    args_parser.add_argument('--train_position',
                             action='store_true',
                             help='train positional encoding for transformer.')

    args_parser.add_argument('--input_concat_embeds',
                             action='store_true',
                             help="Concat input embeddings, otherwise add.")
    args_parser.add_argument('--input_concat_position',
                             action='store_true',
                             help="Concat position embeddings, otherwise add.")
    args_parser.add_argument(
        '--partitioned',
        type='bool',
        default=False,
        help=
        "Partition the content and positional attention for multi-head attention."
    )
    args_parser.add_argument(
        '--partition_type',
        choices=['content-position', 'lexical-delexical'],
        default='content-position',
        help="How to apply partition in the self-attention.")
    #
    args_parser.add_argument(
        '--train_len_thresh',
        type=int,
        default=100,
        help='In training, discard sentences longer than this.')

    #
    # regarding adversarial training
    args_parser.add_argument('--pre_model_path',
                             type=str,
                             default=None,
                             help='Path of the pretrained model.')
    args_parser.add_argument('--pre_model_name',
                             type=str,
                             default=None,
                             help='Name of the pretrained model.')
    args_parser.add_argument('--adv_training',
                             type='bool',
                             default=False,
                             help='Use adversarial training.')
    args_parser.add_argument(
        '--lambdaG',
        type=float,
        default=0.001,
        help='Scaling parameter to control generator loss.')
    args_parser.add_argument('--discriminator',
                             choices=['weak', 'not-so-weak', 'strong'],
                             default='weak',
                             help='architecture of the discriminator')
    args_parser.add_argument(
        '--delay',
        type=int,
        default=0,
        help='Number of epochs to be run first for the source task')
    args_parser.add_argument(
        '--n_critic',
        type=int,
        default=5,
        help='Number of training steps for discriminator per iter')
    args_parser.add_argument(
        '--clip_disc',
        type=float,
        default=5.0,
        help='Lower and upper clip value for disc. weights')
    args_parser.add_argument('--debug',
                             type='bool',
                             default=False,
                             help='Use debug portion of the training data')
    args_parser.add_argument('--train_level',
                             type=str,
                             default='word',
                             choices=['word', 'sent'],
                             help='Use X-level adversarial training')
    args_parser.add_argument('--train_type',
                             type=str,
                             default='GAN',
                             choices=['GR', 'GAN', 'WGAN'],
                             help='Type of adversarial training')
    #
    # regarding motivational training
    args_parser.add_argument(
        '--motivate',
        type='bool',
        default=False,
        help='This is opposite of the adversarial training')

    #
    args = args_parser.parse_args()

    # fix data-prepare seed
    random.seed(1234)
    np.random.seed(1234)
    # model's seed
    torch.manual_seed(args.seed)

    # if output directory doesn't exist, create it
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)
    logger = get_logger("GraphParser")

    logger.info('\ncommand-line params : {0}\n'.format(sys.argv[1:]))
    logger.info('{0}\n'.format(args))

    logger.info("Visible GPUs: %s", str(os.environ["CUDA_VISIBLE_DEVICES"]))
    args.parallel = False
    if torch.cuda.device_count() > 1:
        args.parallel = True

    mode = args.mode
    obj = args.objective
    decoding = args.decode

    train_path = args.data_dir + args.src_lang + "_train.debug.1_10.conllu" \
        if args.debug else args.data_dir + args.src_lang + '_train.conllu'
    dev_path = args.data_dir + args.src_lang + "_dev.conllu"
    test_path = args.data_dir + args.src_lang + "_test.conllu"

    #
    vocab_path = args.vocab_path if args.vocab_path is not None else args.model_path
    model_path = args.model_path
    model_name = args.model_name

    num_epochs = args.num_epochs
    batch_size = args.batch_size
    hidden_size = args.hidden_size
    arc_space = args.arc_space
    type_space = args.type_space
    num_layers = args.num_layers
    num_filters = args.num_filters
    learning_rate = args.learning_rate
    opt = args.opt
    momentum = 0.9
    betas = (0.9, 0.9)
    eps = args.epsilon
    decay_rate = args.decay_rate
    clip = args.clip
    gamma = args.gamma
    schedule = args.schedule
    p_rnn = tuple(args.p_rnn)
    p_in = args.p_in
    p_out = args.p_out
    unk_replace = args.unk_replace
    punctuation = args.punctuation

    freeze = args.freeze
    use_word_emb = not args.no_word
    word_embedding = args.word_embedding
    word_path = args.word_path

    use_char = args.char
    char_embedding = args.char_embedding
    char_path = args.char_path

    attn_on_rnn = args.attn_on_rnn
    encoder_type = args.encoder_type
    if attn_on_rnn:
        assert encoder_type == 'RNN'

    t_types = (args.adv_training, args.motivate)
    t_count = sum(1 for tt in t_types if tt)
    if t_count > 1:
        assert False, "Only one of: adv_training or motivate can be true"

    # ------------------- Loading/initializing embeddings -------------------- #

    use_pos = args.pos
    pos_dim = args.pos_dim
    word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path)
    char_dict = None
    char_dim = args.char_dim
    if char_embedding != 'random':
        char_dict, char_dim = utils.load_embedding_dict(
            char_embedding, char_path)

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(vocab_path, 'alphabets/')
    model_name = os.path.join(model_path, model_name)

    # TODO (WARNING): must build vocabs previously
    assert os.path.isdir(alphabet_path), "should have build vocabs previously"
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet, max_sent_length = conllx_data.create_alphabets(
        alphabet_path,
        train_path,
        data_paths=[dev_path, test_path],
        max_vocabulary_size=50000,
        embedd_dict=word_dict)
    max_sent_length = max(max_sent_length, args.position_embed_num)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    # ------------------------------------------------------------------------- #
    # --------------------- Loading/building the model ------------------------ #

    logger.info("Reading Data")
    use_gpu = torch.cuda.is_available()

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / word_dim)
        table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(
            np.float32) if freeze else np.random.uniform(
                -scale, scale, [1, word_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in word_dict:
                embedding = word_dict[word]
            elif word.lower() in word_dict:
                embedding = word_dict[word.lower()]
            else:
                embedding = np.zeros([1, word_dim]).astype(
                    np.float32) if freeze else np.random.uniform(
                        -scale, scale, [1, word_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('word OOV: %d' % oov)
        return torch.from_numpy(table)

    def construct_char_embedding_table():
        if char_dict is None:
            return None

        scale = np.sqrt(3.0 / char_dim)
        table = np.empty([num_chars, char_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.random.uniform(
            -scale, scale, [1, char_dim]).astype(np.float32)
        oov = 0
        for char, index, in char_alphabet.items():
            if char in char_dict:
                embedding = char_dict[char]
            else:
                embedding = np.random.uniform(-scale, scale,
                                              [1, char_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('character OOV: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table() if use_word_emb else None
    char_table = construct_char_embedding_table() if use_char else None

    def load_model_arguments_from_json():
        arguments = json.load(open(pre_model_path, 'r'))
        return arguments['args'], arguments['kwargs']

    window = 3
    if obj == 'cross_entropy':
        if args.pre_model_path and args.pre_model_name:
            pre_model_name = os.path.join(args.pre_model_path,
                                          args.pre_model_name)
            pre_model_path = pre_model_name + '.arg.json'
            model_args, kwargs = load_model_arguments_from_json()

            network = BiRecurrentConvBiAffine(use_gpu=use_gpu,
                                              *model_args,
                                              **kwargs)
            network.load_state_dict(torch.load(pre_model_name))
            logger.info("Model reloaded from %s" % pre_model_path)

            # Adjust the word embedding layer
            if network.embedder.word_embedd is not None:
                network.embedder.word_embedd = nn.Embedding(num_words,
                                                            word_dim,
                                                            _weight=word_table)

        else:
            network = BiRecurrentConvBiAffine(
                word_dim,
                num_words,
                char_dim,
                num_chars,
                pos_dim,
                num_pos,
                num_filters,
                window,
                mode,
                hidden_size,
                num_layers,
                num_types,
                arc_space,
                type_space,
                embedd_word=word_table,
                embedd_char=char_table,
                p_in=p_in,
                p_out=p_out,
                p_rnn=p_rnn,
                biaffine=True,
                pos=use_pos,
                char=use_char,
                train_position=args.train_position,
                encoder_type=encoder_type,
                trans_hid_size=args.trans_hid_size,
                d_k=args.d_k,
                d_v=args.d_v,
                num_head=args.num_head,
                enc_use_neg_dist=args.enc_use_neg_dist,
                enc_clip_dist=args.enc_clip_dist,
                position_dim=args.position_dim,
                max_sent_length=max_sent_length,
                use_gpu=use_gpu,
                use_word_emb=use_word_emb,
                input_concat_embeds=args.input_concat_embeds,
                input_concat_position=args.input_concat_position,
                attn_on_rnn=attn_on_rnn,
                partitioned=args.partitioned,
                partition_type=args.partition_type,
                use_all_encoder_layers=args.use_all_encoder_layers,
                use_bert=args.use_bert)

    elif obj == 'crf':
        raise NotImplementedError
    else:
        raise RuntimeError('Unknown objective: %s' % obj)

    # ------------------------------------------------------------------------- #
    # --------------------- Loading data -------------------------------------- #

    train_data = dict()
    dev_data = dict()
    test_data = dict()
    num_data = dict()
    lang_ids = dict()
    reverse_lang_ids = dict()

    # ===== the reading =============================================
    def _read_one(path, is_train):
        lang_id = guess_language_id(path)
        logger.info("Reading: guess that the language of file %s is %s." %
                    (path, lang_id))
        one_data = conllx_data.read_data_to_variable(
            path,
            word_alphabet,
            char_alphabet,
            pos_alphabet,
            type_alphabet,
            use_gpu=False,
            volatile=(not is_train),
            symbolic_root=True,
            lang_id=lang_id,
            use_bert=args.use_bert,
            len_thresh=(args.train_len_thresh if is_train else 100000))
        return one_data

    data_train = _read_one(train_path, True)
    train_data[args.src_lang] = data_train
    num_data[args.src_lang] = sum(data_train[1])
    lang_ids[args.src_lang] = len(lang_ids)
    reverse_lang_ids[lang_ids[args.src_lang]] = args.src_lang

    data_dev = _read_one(dev_path, False)
    data_test = _read_one(test_path, False)
    dev_data[args.src_lang] = data_dev
    test_data[args.src_lang] = data_test

    # ===============================================================

    # ===== reading data for adversarial training ===================
    if t_count > 0:
        for language in args.aux_lang:
            aux_train_path = args.data_dir + language + "_train.debug.1_10.conllu" \
                if args.debug else args.data_dir + language + '_train.conllu'
            aux_train_data = _read_one(aux_train_path, True)
            num_data[language] = sum(aux_train_data[1])
            train_data[language] = aux_train_data
            lang_ids[language] = len(lang_ids)
            reverse_lang_ids[lang_ids[language]] = language
    # ===============================================================

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" %
                    (len(punct_set), ' '.join(punct_set)))

    def save_args():
        arg_path = model_name + '.arg.json'
        arguments = [
            word_dim, num_words, char_dim, num_chars, pos_dim, num_pos,
            num_filters, window, mode, hidden_size, num_layers, num_types,
            arc_space, type_space
        ]
        kwargs = {
            'p_in': p_in,
            'p_out': p_out,
            'p_rnn': p_rnn,
            'biaffine': True,
            'pos': use_pos,
            'char': use_char,
            'train_position': args.train_position,
            'encoder_type': args.encoder_type,
            'trans_hid_size': args.trans_hid_size,
            'd_k': args.d_k,
            'd_v': args.d_v,
            'num_head': args.num_head,
            'enc_use_neg_dist': args.enc_use_neg_dist,
            'enc_clip_dist': args.enc_clip_dist,
            'position_dim': args.position_dim,
            'max_sent_length': max_sent_length,
            'use_word_emb': use_word_emb,
            'input_concat_embeds': args.input_concat_embeds,
            'input_concat_position': args.input_concat_position,
            'attn_on_rnn': attn_on_rnn,
            'partitioned': args.partitioned,
            'partition_type': args.partition_type,
            'use_all_encoder_layers': args.use_all_encoder_layers,
            'use_bert': args.use_bert
        }
        json.dump({
            'args': arguments,
            'kwargs': kwargs
        },
                  open(arg_path, 'w'),
                  indent=4)

    if use_word_emb and freeze:
        freeze_embedding(network.embedder.word_embedd)

    if args.parallel:
        network = torch.nn.DataParallel(network)

    if use_gpu:
        network = network.cuda()

    save_args()

    param_dict = {}
    encoder = network.module.encoder if args.parallel else network.encoder
    for name, param in encoder.named_parameters():
        if param.requires_grad:
            param_dict[name] = np.prod(param.size())

    total_params = np.sum(list(param_dict.values()))
    logger.info('Total Encoder Parameters = %d' % total_params)

    # ------------------------------------------------------------------------- #

    # =============================================
    if args.adv_training:
        disc_feat_size = network.module.encoder.output_dim if args.parallel else network.encoder.output_dim
        reverse_grad = args.train_type == 'GR'
        nclass = len(lang_ids) if args.train_type == 'GR' else 1

        kwargs = {
            'input_size': disc_feat_size,
            'disc_type': args.discriminator,
            'train_level': args.train_level,
            'train_type': args.train_type,
            'reverse_grad': reverse_grad,
            'soft_label': True,
            'nclass': nclass,
            'scale': args.lambdaG,
            'use_gpu': use_gpu,
            'opt': 'adam',
            'lr': 0.001,
            'betas': (0.9, 0.999),
            'gamma': 0,
            'eps': 1e-8,
            'momentum': 0,
            'clip_disc': args.clip_disc
        }
        AdvAgent = Adversarial(**kwargs)
        if use_gpu:
            AdvAgent.cuda()

    elif args.motivate:
        disc_feat_size = network.module.encoder.output_dim if args.parallel else network.encoder.output_dim
        nclass = len(lang_ids)

        kwargs = {
            'input_size': disc_feat_size,
            'disc_type': args.discriminator,
            'train_level': args.train_level,
            'nclass': nclass,
            'scale': args.lambdaG,
            'use_gpu': use_gpu,
            'opt': 'adam',
            'lr': 0.001,
            'betas': (0.9, 0.999),
            'gamma': 0,
            'eps': 1e-8,
            'momentum': 0,
            'clip_disc': args.clip_disc
        }
        MtvAgent = Motivator(**kwargs)
        if use_gpu:
            MtvAgent.cuda()

    # =============================================

    # --------------------- Initializing the optimizer ------------------------ #

    lr = learning_rate
    optim = generate_optimizer(opt, lr, network.parameters(), betas, gamma,
                               eps, momentum)
    opt_info = 'opt: %s, ' % opt
    if opt == 'adam':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)
    elif opt == 'sgd':
        opt_info += 'momentum=%.2f' % momentum
    elif opt == 'adamax':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)

    # =============================================

    total_data = min(num_data.values())

    word_status = 'frozen' if freeze else 'fine tune'
    char_status = 'enabled' if use_char else 'disabled'
    pos_status = 'enabled' if use_pos else 'disabled'
    logger.info(
        "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" %
        (word_dim, word_status, char_dim, char_status, pos_dim, pos_status))
    logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window))
    logger.info(
        "RNN: %s, num_layer=%d, hidden=%d, arc_space=%d, type_space=%d" %
        (mode, num_layers, hidden_size, arc_space, type_space))
    logger.info(
        "train: obj: %s, l2: %f, (#data: %d, batch: %d, clip: %.2f, unk replace: %.2f)"
        % (obj, gamma, total_data, batch_size, clip, unk_replace))
    logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" %
                (p_in, p_out, p_rnn))
    logger.info("decoding algorithm: %s" % decoding)
    logger.info(opt_info)

    # ------------------------------------------------------------------------- #
    # --------------------- Form the mini-batches ----------------------------- #
    num_batches = total_data // batch_size + 1
    aux_lang = []
    if t_count > 0:
        for language in args.aux_lang:
            aux_lang.extend([language] * num_data[language])

        assert num_data[args.src_lang] <= len(aux_lang)
    # ------------------------------------------------------------------------- #

    dev_ucorrect = 0.0
    dev_lcorrect = 0.0
    dev_ucomlpete_match = 0.0
    dev_lcomplete_match = 0.0

    dev_ucorrect_nopunc = 0.0
    dev_lcorrect_nopunc = 0.0
    dev_ucomlpete_match_nopunc = 0.0
    dev_lcomplete_match_nopunc = 0.0
    dev_root_correct = 0.0

    best_epoch = 0

    if decoding == 'greedy':
        decode = network.module.decode if args.parallel else network.decode
    elif decoding == 'mst':
        decode = network.module.decode_mst if args.parallel else network.decode_mst
    else:
        raise ValueError('Unknown decoding algorithm: %s' % decoding)

    patient = 0
    decay = 0
    max_decay = args.max_decay
    double_schedule_decay = args.double_schedule_decay

    # lrate schedule
    step_num = 0
    use_warmup_schedule = args.use_warmup_schedule

    if use_warmup_schedule:
        logger.info("Use warmup lrate for the first epoch, from 0 up to %s." %
                    (lr, ))

    skip_adv_tuning = 0
    loss_fn = network.module.loss if args.parallel else network.loss
    for epoch in range(1, num_epochs + 1):
        print(
            'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d)): '
            %
            (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay))
        train_err = 0.
        train_err_arc = 0.
        train_err_type = 0.
        train_total = 0.
        start_time = time.time()
        num_back = 0

        skip_adv_tuning += 1
        loss_d_real, loss_d_fake = [], []
        acc_d_real, acc_d_fake, = [], []
        gen_loss, parsing_loss = [], []
        disent_loss = []

        if t_count > 0 and skip_adv_tuning > args.delay:
            batch_size = args.batch_size // 2
            num_batches = total_data // batch_size + 1

        # ---------------------- Sample the mini-batches -------------------------- #
        if t_count > 0:
            sampled_aux_lang = random.sample(aux_lang, num_batches)
            lang_in_batch = [(args.src_lang, sampled_aux_lang[k])
                             for k in range(num_batches)]
        else:
            lang_in_batch = [(args.src_lang, None) for _ in range(num_batches)]
        assert len(lang_in_batch) == num_batches
        # ------------------------------------------------------------------------- #

        network.train()
        warmup_factor = (lr + 0.) / num_batches
        for batch in range(1, num_batches + 1):
            update_generator = True
            update_discriminator = False

            # lrate schedule (before each step)
            step_num += 1
            if use_warmup_schedule and epoch <= 1:
                cur_lrate = warmup_factor * step_num
                # set lr
                for param_group in optim.param_groups:
                    param_group['lr'] = cur_lrate

            # considering source language as real and auxiliary languages as fake
            real_lang, fake_lang = lang_in_batch[batch - 1]
            real_idx, fake_idx = lang_ids.get(real_lang), lang_ids.get(
                fake_lang, -1)

            #
            word, char, pos, heads, types, masks, lengths, bert_inputs = conllx_data.get_batch_variable(
                train_data[real_lang], batch_size, unk_replace=unk_replace)

            if use_gpu:
                word = word.cuda()
                char = char.cuda()
                pos = pos.cuda()
                heads = heads.cuda()
                types = types.cuda()
                masks = masks.cuda()
                lengths = lengths.cuda()
                if bert_inputs[0] is not None:
                    bert_inputs[0] = bert_inputs[0].cuda()
                    bert_inputs[1] = bert_inputs[1].cuda()
                    bert_inputs[2] = bert_inputs[2].cuda()

            real_enc = network(word,
                               char,
                               pos,
                               input_bert=bert_inputs,
                               mask=masks,
                               length=lengths,
                               hx=None)

            # ========== Update the discriminator ==========
            if t_count > 0 and skip_adv_tuning > args.delay:
                # fake examples = 0
                word_f, char_f, pos_f, heads_f, types_f, masks_f, lengths_f, bert_inputs = conllx_data.get_batch_variable(
                    train_data[fake_lang], batch_size, unk_replace=unk_replace)

                if use_gpu:
                    word_f = word_f.cuda()
                    char_f = char_f.cuda()
                    pos_f = pos_f.cuda()
                    heads_f = heads_f.cuda()
                    types_f = types_f.cuda()
                    masks_f = masks_f.cuda()
                    lengths_f = lengths_f.cuda()
                    if bert_inputs[0] is not None:
                        bert_inputs[0] = bert_inputs[0].cuda()
                        bert_inputs[1] = bert_inputs[1].cuda()
                        bert_inputs[2] = bert_inputs[2].cuda()

                fake_enc = network(word_f,
                                   char_f,
                                   pos_f,
                                   input_bert=bert_inputs,
                                   mask=masks_f,
                                   length=lengths_f,
                                   hx=None)

                # TODO: temporary crack
                if t_count > 0 and skip_adv_tuning > args.delay:
                    # skip discriminator training for '|n_critic|' iterations if 'n_critic' < 0
                    if args.n_critic > 0 or (batch - 1) % (-1 *
                                                           args.n_critic) == 0:
                        update_discriminator = True

            if update_discriminator:
                if args.adv_training:
                    real_loss, fake_loss, real_acc, fake_acc = AdvAgent.update(
                        real_enc['output'].detach(),
                        fake_enc['output'].detach(), real_idx, fake_idx)

                    loss_d_real.append(real_loss)
                    loss_d_fake.append(fake_loss)
                    acc_d_real.append(real_acc)
                    acc_d_fake.append(fake_acc)

                elif args.motivate:
                    real_loss, fake_loss, real_acc, fake_acc = MtvAgent.update(
                        real_enc['output'].detach(),
                        fake_enc['output'].detach(), real_idx, fake_idx)

                    loss_d_real.append(real_loss)
                    loss_d_fake.append(fake_loss)
                    acc_d_real.append(real_acc)
                    acc_d_fake.append(fake_acc)

                else:
                    raise NotImplementedError()

                if args.n_critic > 0 and (batch - 1) % args.n_critic != 0:
                    update_generator = False

            # ==============================================

            # =========== Update the generator =============
            if update_generator:
                others_loss = None
                if args.adv_training and skip_adv_tuning > args.delay:
                    # for GAN: L_G= L_parsing - (lambda_G * L_D)
                    # for GR : L_G= L_parsing +  L_D
                    others_loss = AdvAgent.gen_loss(real_enc['output'],
                                                    fake_enc['output'],
                                                    real_idx, fake_idx)
                    gen_loss.append(others_loss.item())

                elif args.motivate and skip_adv_tuning > args.delay:
                    others_loss = MtvAgent.gen_loss(real_enc['output'],
                                                    fake_enc['output'],
                                                    real_idx, fake_idx)
                    gen_loss.append(others_loss.item())

                optim.zero_grad()

                loss_arc, loss_type = loss_fn(real_enc['output'],
                                              heads,
                                              types,
                                              mask=masks,
                                              length=lengths)
                loss = loss_arc + loss_type

                num_inst = word.size(
                    0) if obj == 'crf' else masks.sum() - word.size(0)
                train_err += loss.item() * num_inst
                train_err_arc += loss_arc.item() * num_inst
                train_err_type += loss_type.item() * num_inst
                train_total += num_inst
                parsing_loss.append(loss.item())

                if others_loss is not None:
                    loss = loss + others_loss

                loss.backward()
                clip_grad_norm_(network.parameters(), clip)
                optim.step()

                time_ave = (time.time() - start_time) / batch
                time_left = (num_batches - batch) * time_ave

        if (args.adv_training
                or args.motivate) and skip_adv_tuning > args.delay:
            logger.info(
                'epoch: %d train: %d loss: %.4f, arc: %.4f, type: %.4f, dis_loss: (%.2f, %.2f), dis_acc: (%.2f, %.2f), '
                'gen_loss: %.2f, time: %.2fs' %
                (epoch, num_batches, train_err / train_total,
                 train_err_arc / train_total, train_err_type / train_total,
                 sum(loss_d_real) / len(loss_d_real), sum(loss_d_fake) /
                 len(loss_d_fake), sum(acc_d_real) / len(acc_d_real),
                 sum(acc_d_fake) / len(acc_d_fake),
                 sum(gen_loss) / len(gen_loss), time.time() - start_time))
        else:
            logger.info(
                'epoch: %d train: %d loss: %.4f, arc: %.4f, type: %.4f, time: %.2fs'
                % (epoch, num_batches, train_err / train_total,
                   train_err_arc / train_total, train_err_type / train_total,
                   time.time() - start_time))

        ################# Validation on Dependency Parsing Only #################################
        if epoch % args.check_dev != 0:
            continue

        with torch.no_grad():
            # evaluate performance on dev data
            network.eval()

            dev_ucorr = 0.0
            dev_lcorr = 0.0
            dev_total = 0
            dev_ucomlpete = 0.0
            dev_lcomplete = 0.0
            dev_ucorr_nopunc = 0.0
            dev_lcorr_nopunc = 0.0
            dev_total_nopunc = 0
            dev_ucomlpete_nopunc = 0.0
            dev_lcomplete_nopunc = 0.0
            dev_root_corr = 0.0
            dev_total_root = 0.0
            dev_total_inst = 0.0

            for lang, data_dev in dev_data.items():
                for batch in conllx_data.iterate_batch_variable(
                        data_dev, batch_size):
                    word, char, pos, heads, types, masks, lengths, bert_inputs = batch

                    if use_gpu:
                        word = word.cuda()
                        char = char.cuda()
                        pos = pos.cuda()
                        heads = heads.cuda()
                        types = types.cuda()
                        masks = masks.cuda()
                        lengths = lengths.cuda()
                        if bert_inputs[0] is not None:
                            bert_inputs[0] = bert_inputs[0].cuda()
                            bert_inputs[1] = bert_inputs[1].cuda()
                            bert_inputs[2] = bert_inputs[2].cuda()

                    heads_pred, types_pred = decode(
                        word,
                        char,
                        pos,
                        input_bert=bert_inputs,
                        mask=masks,
                        length=lengths,
                        leading_symbolic=conllx_data.NUM_SYMBOLIC_TAGS)
                    word = word.cpu().numpy()
                    pos = pos.cpu().numpy()
                    lengths = lengths.cpu().numpy()
                    heads = heads.cpu().numpy()
                    types = types.cpu().numpy()

                    stats, stats_nopunc, stats_root, num_inst = parser.eval(
                        word,
                        pos,
                        heads_pred,
                        types_pred,
                        heads,
                        types,
                        word_alphabet,
                        pos_alphabet,
                        lengths,
                        punct_set=punct_set,
                        symbolic_root=True)
                    ucorr, lcorr, total, ucm, lcm = stats
                    ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
                    corr_root, total_root = stats_root

                    dev_ucorr += ucorr
                    dev_lcorr += lcorr
                    dev_total += total
                    dev_ucomlpete += ucm
                    dev_lcomplete += lcm

                    dev_ucorr_nopunc += ucorr_nopunc
                    dev_lcorr_nopunc += lcorr_nopunc
                    dev_total_nopunc += total_nopunc
                    dev_ucomlpete_nopunc += ucm_nopunc
                    dev_lcomplete_nopunc += lcm_nopunc

                    dev_root_corr += corr_root
                    dev_total_root += total_root
                    dev_total_inst += num_inst

            print(
                'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%'
                % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 /
                   dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete *
                   100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst))
            print(
                'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%'
                %
                (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc,
                 dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc *
                 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 /
                 dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst))
            print('Root: corr: %d, total: %d, acc: %.2f%%' %
                  (dev_root_corr, dev_total_root,
                   dev_root_corr * 100 / dev_total_root))

            if dev_lcorrect_nopunc < dev_lcorr_nopunc or (
                    dev_lcorrect_nopunc == dev_lcorr_nopunc
                    and dev_ucorrect_nopunc < dev_ucorr_nopunc):
                dev_ucorrect_nopunc = dev_ucorr_nopunc
                dev_lcorrect_nopunc = dev_lcorr_nopunc
                dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc
                dev_lcomplete_match_nopunc = dev_lcomplete_nopunc

                dev_ucorrect = dev_ucorr
                dev_lcorrect = dev_lcorr
                dev_ucomlpete_match = dev_ucomlpete
                dev_lcomplete_match = dev_lcomplete

                dev_root_correct = dev_root_corr

                best_epoch = epoch
                patient = 0

                state_dict = network.module.state_dict(
                ) if args.parallel else network.state_dict()
                torch.save(state_dict, model_name)

            else:
                if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule:
                    state_dict = torch.load(model_name)
                    if args.parallel:
                        network.module.load_state_dict(state_dict)
                    else:
                        network.load_state_dict(state_dict)

                    lr = lr * decay_rate
                    optim = generate_optimizer(opt, lr, network.parameters(),
                                               betas, gamma, eps, momentum)

                    if decoding == 'greedy':
                        decode = network.module.decode if args.parallel else network.decode
                    elif decoding == 'mst':
                        decode = network.module.decode_mst if args.parallel else network.decode_mst
                    else:
                        raise ValueError('Unknown decoding algorithm: %s' %
                                         decoding)

                    patient = 0
                    decay += 1
                    if decay % double_schedule_decay == 0:
                        schedule *= 2
                else:
                    patient += 1

            print(
                '----------------------------------------------------------------------------------------------------------------------------'
            )
            print(
                'best dev  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 /
                   dev_total, dev_lcorrect * 100 / dev_total,
                   dev_ucomlpete_match * 100 / dev_total_inst,
                   dev_lcomplete_match * 100 / dev_total_inst, best_epoch))
            print(
                'best dev  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc,
                   dev_ucorrect_nopunc * 100 / dev_total_nopunc,
                   dev_lcorrect_nopunc * 100 / dev_total_nopunc,
                   dev_ucomlpete_match_nopunc * 100 / dev_total_inst,
                   dev_lcomplete_match_nopunc * 100 / dev_total_inst,
                   best_epoch))
            print(
                'best dev  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                % (dev_root_correct, dev_total_root,
                   dev_root_correct * 100 / dev_total_root, best_epoch))
            print(
                '----------------------------------------------------------------------------------------------------------------------------'
            )
            if decay == max_decay:
                break

        torch.cuda.empty_cache()  # release memory that can be released
Esempio n. 3
0
def train(args):
    logger = get_logger("Parsing")

    args.cuda = torch.cuda.is_available()
    device = torch.device('cuda', 0) if args.cuda else torch.device('cpu')
    train_path = args.train
    dev_path = args.dev
    test_path = args.test

    num_epochs = args.num_epochs
    batch_size = args.batch_size
    optim = args.optim
    learning_rate = args.learning_rate
    lr_decay = args.lr_decay
    amsgrad = args.amsgrad
    eps = args.eps
    betas = (args.beta1, args.beta2)
    warmup_steps = args.warmup_steps
    weight_decay = args.weight_decay
    grad_clip = args.grad_clip

    loss_ty_token = args.loss_type == 'token'
    unk_replace = args.unk_replace
    freeze = args.freeze

    model_path = args.model_path
    model_name = os.path.join(model_path, 'model.pt')
    punctuation = args.punctuation

    word_embedding = args.word_embedding
    word_path = args.word_path
    char_embedding = args.char_embedding
    char_path = args.char_path

    print(args)

    word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path)
    char_dict = None
    if char_embedding != 'random':
        char_dict, char_dim = utils.load_embedding_dict(
            char_embedding, char_path)
    else:
        char_dict = None
        char_dim = None

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(model_path, 'alphabets')
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_data.create_alphabets(
        alphabet_path,
        train_path,
        data_paths=[dev_path, test_path],
        embedd_dict=word_dict,
        max_vocabulary_size=200000)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    result_path = os.path.join(model_path, 'tmp')
    if not os.path.exists(result_path):
        os.makedirs(result_path)

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" %
                    (len(punct_set), ' '.join(punct_set)))

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / word_dim)
        table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(
            np.float32) if freeze else np.random.uniform(
                -scale, scale, [1, word_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in word_dict:
                embedding = word_dict[word]
            elif word.lower() in word_dict:
                embedding = word_dict[word.lower()]
            else:
                embedding = np.zeros([1, word_dim]).astype(
                    np.float32) if freeze else np.random.uniform(
                        -scale, scale, [1, word_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('word OOV: %d' % oov)
        return torch.from_numpy(table)

    def construct_char_embedding_table():
        if char_dict is None:
            return None

        scale = np.sqrt(3.0 / char_dim)
        table = np.empty([num_chars, char_dim], dtype=np.float32)
        table[conllx_data.UNK_ID, :] = np.random.uniform(
            -scale, scale, [1, char_dim]).astype(np.float32)
        oov = 0
        for char, index, in char_alphabet.items():
            if char in char_dict:
                embedding = char_dict[char]
            else:
                embedding = np.random.uniform(-scale, scale,
                                              [1, char_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('character OOV: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table()
    char_table = construct_char_embedding_table()

    logger.info("constructing network...")

    hyps = json.load(open(args.config, 'r'))
    json.dump(hyps,
              open(os.path.join(model_path, 'config.json'), 'w'),
              indent=2)
    model_type = hyps['model']
    assert model_type in ['DeepBiAffine', 'NeuroMST', 'StackPtr']
    assert word_dim == hyps['word_dim']
    if char_dim is not None:
        assert char_dim == hyps['char_dim']
    else:
        char_dim = hyps['char_dim']
    use_pos = hyps['pos']
    pos_dim = hyps['pos_dim']
    mode = hyps['rnn_mode']
    hidden_size = hyps['hidden_size']
    arc_space = hyps['arc_space']
    type_space = hyps['type_space']
    p_in = hyps['p_in']
    p_out = hyps['p_out']
    p_rnn = hyps['p_rnn']
    activation = hyps['activation']
    prior_order = None

    alg = 'transition' if model_type == 'StackPtr' else 'graph'
    if model_type == 'DeepBiAffine':
        num_layers = hyps['num_layers']
        network = DeepBiAffine(word_dim,
                               num_words,
                               char_dim,
                               num_chars,
                               pos_dim,
                               num_pos,
                               mode,
                               hidden_size,
                               num_layers,
                               num_types,
                               arc_space,
                               type_space,
                               embedd_word=word_table,
                               embedd_char=char_table,
                               p_in=p_in,
                               p_out=p_out,
                               p_rnn=p_rnn,
                               pos=use_pos,
                               activation=activation)
    elif model_type == 'NeuroMST':
        num_layers = hyps['num_layers']
        network = NeuroMST(word_dim,
                           num_words,
                           char_dim,
                           num_chars,
                           pos_dim,
                           num_pos,
                           mode,
                           hidden_size,
                           num_layers,
                           num_types,
                           arc_space,
                           type_space,
                           embedd_word=word_table,
                           embedd_char=char_table,
                           p_in=p_in,
                           p_out=p_out,
                           p_rnn=p_rnn,
                           pos=use_pos,
                           activation=activation)
    elif model_type == 'StackPtr':
        encoder_layers = hyps['encoder_layers']
        decoder_layers = hyps['decoder_layers']
        num_layers = (encoder_layers, decoder_layers)
        prior_order = hyps['prior_order']
        grandPar = hyps['grandPar']
        sibling = hyps['sibling']
        network = StackPtrNet(word_dim,
                              num_words,
                              char_dim,
                              num_chars,
                              pos_dim,
                              num_pos,
                              mode,
                              hidden_size,
                              encoder_layers,
                              decoder_layers,
                              num_types,
                              arc_space,
                              type_space,
                              embedd_word=word_table,
                              embedd_char=char_table,
                              prior_order=prior_order,
                              activation=activation,
                              p_in=p_in,
                              p_out=p_out,
                              p_rnn=p_rnn,
                              pos=use_pos,
                              grandPar=grandPar,
                              sibling=sibling)
    else:
        raise RuntimeError('Unknown model type: %s' % model_type)

    if freeze:
        freeze_embedding(network.word_embed)

    network = network.to(device)
    model = "{}-{}".format(model_type, mode)
    logger.info("Network: %s, num_layer=%s, hidden=%d, act=%s" %
                (model, num_layers, hidden_size, activation))
    logger.info("dropout(in, out, rnn): %s(%.2f, %.2f, %s)" %
                ('variational', p_in, p_out, p_rnn))
    logger.info('# of Parameters: %d' %
                (sum([param.numel() for param in network.parameters()])))

    logger.info("Reading Data")
    if alg == 'graph':
        data_train = conllx_data.read_bucketed_data(train_path,
                                                    word_alphabet,
                                                    char_alphabet,
                                                    pos_alphabet,
                                                    type_alphabet,
                                                    symbolic_root=True)
        data_dev = conllx_data.read_data(dev_path,
                                         word_alphabet,
                                         char_alphabet,
                                         pos_alphabet,
                                         type_alphabet,
                                         symbolic_root=True)
        data_test = conllx_data.read_data(test_path,
                                          word_alphabet,
                                          char_alphabet,
                                          pos_alphabet,
                                          type_alphabet,
                                          symbolic_root=True)
    else:
        data_train = conllx_stacked_data.read_bucketed_data(
            train_path,
            word_alphabet,
            char_alphabet,
            pos_alphabet,
            type_alphabet,
            prior_order=prior_order)
        data_dev = conllx_stacked_data.read_data(dev_path,
                                                 word_alphabet,
                                                 char_alphabet,
                                                 pos_alphabet,
                                                 type_alphabet,
                                                 prior_order=prior_order)
        data_test = conllx_stacked_data.read_data(test_path,
                                                  word_alphabet,
                                                  char_alphabet,
                                                  pos_alphabet,
                                                  type_alphabet,
                                                  prior_order=prior_order)
    num_data = sum(data_train[1])
    logger.info("training: #training data: %d, batch: %d, unk replace: %.2f" %
                (num_data, batch_size, unk_replace))

    pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    optimizer, scheduler = get_optimizer(network.parameters(), optim,
                                         learning_rate, lr_decay, betas, eps,
                                         amsgrad, weight_decay, warmup_steps)

    best_ucorrect = 0.0
    best_lcorrect = 0.0
    best_ucomlpete = 0.0
    best_lcomplete = 0.0

    best_ucorrect_nopunc = 0.0
    best_lcorrect_nopunc = 0.0
    best_ucomlpete_nopunc = 0.0
    best_lcomplete_nopunc = 0.0
    best_root_correct = 0.0
    best_total = 0
    best_total_nopunc = 0
    best_total_inst = 0
    best_total_root = 0

    best_epoch = 0

    test_ucorrect = 0.0
    test_lcorrect = 0.0
    test_ucomlpete = 0.0
    test_lcomplete = 0.0

    test_ucorrect_nopunc = 0.0
    test_lcorrect_nopunc = 0.0
    test_ucomlpete_nopunc = 0.0
    test_lcomplete_nopunc = 0.0
    test_root_correct = 0.0
    test_total = 0
    test_total_nopunc = 0
    test_total_inst = 0
    test_total_root = 0

    patient = 0
    beam = args.beam
    reset = args.reset
    num_batches = num_data // batch_size + 1
    if optim == 'adam':
        opt_info = 'adam, betas=(%.1f, %.3f), eps=%.1e, amsgrad=%s' % (
            betas[0], betas[1], eps, amsgrad)
    else:
        opt_info = 'sgd, momentum=0.9, nesterov=True'
    for epoch in range(1, num_epochs + 1):
        start_time = time.time()
        train_loss = 0.
        train_arc_loss = 0.
        train_type_loss = 0.
        num_insts = 0
        num_words = 0
        num_back = 0
        num_nans = 0
        network.train()
        lr = scheduler.get_lr()[0]
        print(
            'Epoch %d (%s, lr=%.6f, lr decay=%.6f, grad clip=%.1f, l2=%.1e): '
            % (epoch, opt_info, lr, lr_decay, grad_clip, weight_decay))
        if args.cuda:
            torch.cuda.empty_cache()
        gc.collect()
        with torch.autograd.set_detect_anomaly(True):
            for step, data in enumerate(
                    iterate_data(data_train,
                                 batch_size,
                                 bucketed=True,
                                 unk_replace=unk_replace,
                                 shuffle=True)):
                optimizer.zero_grad()
                bert_words = data["BERT_WORD"].to(device)
                sub_word_idx = data["SUB_IDX"].to(device)
                words = data['WORD'].to(device)
                chars = data['CHAR'].to(device)
                postags = data['POS'].to(device)
                heads = data['HEAD'].to(device)
                nbatch = words.size(0)
                if alg == 'graph':
                    types = data['TYPE'].to(device)
                    masks = data['MASK'].to(device)
                    nwords = masks.sum() - nbatch
                    BERT = True
                    if BERT:
                        loss_arc, loss_type = network.loss(bert_words,
                                                           sub_word_idx,
                                                           words,
                                                           chars,
                                                           postags,
                                                           heads,
                                                           types,
                                                           mask=masks)
                    else:
                        loss_arc, loss_type = network.loss(words,
                                                           chars,
                                                           postags,
                                                           heads,
                                                           types,
                                                           mask=masks)
                else:
                    masks_enc = data['MASK_ENC'].to(device)
                    masks_dec = data['MASK_DEC'].to(device)
                    stacked_heads = data['STACK_HEAD'].to(device)
                    children = data['CHILD'].to(device)
                    siblings = data['SIBLING'].to(device)
                    stacked_types = data['STACK_TYPE'].to(device)
                    nwords = masks_enc.sum() - nbatch
                    loss_arc, loss_type = network.loss(words,
                                                       chars,
                                                       postags,
                                                       heads,
                                                       stacked_heads,
                                                       children,
                                                       siblings,
                                                       stacked_types,
                                                       mask_e=masks_enc,
                                                       mask_d=masks_dec)
                loss_arc = loss_arc.sum()
                loss_type = loss_type.sum()
                loss_total = loss_arc + loss_type

                # print("loss", loss_arc, loss_type, loss_total)
                if loss_ty_token:
                    loss = loss_total.div(nwords)
                else:
                    loss = loss_total.div(nbatch)
                loss.backward()
                if grad_clip > 0:
                    grad_norm = clip_grad_norm_(network.parameters(),
                                                grad_clip)
                else:
                    grad_norm = total_grad_norm(network.parameters())

                if math.isnan(grad_norm):
                    num_nans += 1
                else:
                    optimizer.step()
                    scheduler.step()

                    with torch.no_grad():
                        num_insts += nbatch
                        num_words += nwords
                        train_loss += loss_total.item()
                        train_arc_loss += loss_arc.item()
                        train_type_loss += loss_type.item()

                # update log
                if step % 100 == 0:
                    torch.cuda.empty_cache()
                    sys.stdout.write("\b" * num_back)
                    sys.stdout.write(" " * num_back)
                    sys.stdout.write("\b" * num_back)
                    curr_lr = scheduler.get_lr()[0]
                    num_insts = max(num_insts, 1)
                    num_words = max(num_words, 1)
                    log_info = '[%d/%d (%.0f%%) lr=%.6f (%d)] loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f)' % (
                        step, num_batches, 100. * step / num_batches, curr_lr,
                        num_nans, train_loss / num_insts,
                        train_loss / num_words, train_arc_loss / num_insts,
                        train_arc_loss / num_words, train_type_loss /
                        num_insts, train_type_loss / num_words)
                    sys.stdout.write(log_info)
                    sys.stdout.flush()
                    num_back = len(log_info)

            sys.stdout.write("\b" * num_back)
            sys.stdout.write(" " * num_back)
            sys.stdout.write("\b" * num_back)
            print(
                'total: %d (%d), loss: %.4f (%.4f), arc: %.4f (%.4f), type: %.4f (%.4f), time: %.2fs'
                % (num_insts, num_words, train_loss / num_insts,
                   train_loss / num_words, train_arc_loss / num_insts,
                   train_arc_loss / num_words, train_type_loss / num_insts,
                   train_type_loss / num_words, time.time() - start_time))
            print('-' * 125)

            # evaluate performance on dev data
            with torch.no_grad():
                pred_filename = os.path.join(result_path, 'pred_dev%d' % epoch)
                pred_writer.start(pred_filename)
                gold_filename = os.path.join(result_path, 'gold_dev%d' % epoch)
                gold_writer.start(gold_filename)

                print('Evaluating dev:')
                dev_stats, dev_stats_nopunct, dev_stats_root = eval(
                    alg,
                    data_dev,
                    network,
                    pred_writer,
                    gold_writer,
                    punct_set,
                    word_alphabet,
                    pos_alphabet,
                    device,
                    beam=beam)

                pred_writer.close()
                gold_writer.close()

                dev_ucorr, dev_lcorr, dev_ucomlpete, dev_lcomplete, dev_total = dev_stats
                dev_ucorr_nopunc, dev_lcorr_nopunc, dev_ucomlpete_nopunc, dev_lcomplete_nopunc, dev_total_nopunc = dev_stats_nopunct
                dev_root_corr, dev_total_root, dev_total_inst = dev_stats_root

                if best_ucorrect_nopunc + best_lcorrect_nopunc < dev_ucorr_nopunc + dev_lcorr_nopunc:
                    best_ucorrect_nopunc = dev_ucorr_nopunc
                    best_lcorrect_nopunc = dev_lcorr_nopunc
                    best_ucomlpete_nopunc = dev_ucomlpete_nopunc
                    best_lcomplete_nopunc = dev_lcomplete_nopunc

                    best_ucorrect = dev_ucorr
                    best_lcorrect = dev_lcorr
                    best_ucomlpete = dev_ucomlpete
                    best_lcomplete = dev_lcomplete

                    best_root_correct = dev_root_corr
                    best_total = dev_total
                    best_total_nopunc = dev_total_nopunc
                    best_total_root = dev_total_root
                    best_total_inst = dev_total_inst

                    best_epoch = epoch
                    patient = 0
                    torch.save(network.state_dict(), model_name)

                    pred_filename = os.path.join(result_path,
                                                 'pred_test%d' % epoch)
                    pred_writer.start(pred_filename)
                    gold_filename = os.path.join(result_path,
                                                 'gold_test%d' % epoch)
                    gold_writer.start(gold_filename)

                    print('Evaluating test:')
                    test_stats, test_stats_nopunct, test_stats_root = eval(
                        alg,
                        data_test,
                        network,
                        pred_writer,
                        gold_writer,
                        punct_set,
                        word_alphabet,
                        pos_alphabet,
                        device,
                        beam=beam)

                    test_ucorrect, test_lcorrect, test_ucomlpete, test_lcomplete, test_total = test_stats
                    test_ucorrect_nopunc, test_lcorrect_nopunc, test_ucomlpete_nopunc, test_lcomplete_nopunc, test_total_nopunc = test_stats_nopunct
                    test_root_correct, test_total_root, test_total_inst = test_stats_root

                    pred_writer.close()
                    gold_writer.close()
                else:
                    patient += 1

                print('-' * 125)
                print(
                    'best dev  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (best_ucorrect, best_lcorrect, best_total,
                       best_ucorrect * 100 / best_total, best_lcorrect * 100 /
                       best_total, best_ucomlpete * 100 / dev_total_inst,
                       best_lcomplete * 100 / dev_total_inst, best_epoch))
                print(
                    'best dev  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (best_ucorrect_nopunc, best_lcorrect_nopunc,
                       best_total_nopunc, best_ucorrect_nopunc * 100 /
                       best_total_nopunc, best_lcorrect_nopunc * 100 /
                       best_total_nopunc, best_ucomlpete_nopunc * 100 /
                       best_total_inst, best_lcomplete_nopunc * 100 /
                       best_total_inst, best_epoch))
                print(
                    'best dev  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                    % (best_root_correct, best_total_root,
                       best_root_correct * 100 / best_total_root, best_epoch))
                print('-' * 125)
                print(
                    'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (test_ucorrect, test_lcorrect, test_total,
                       test_ucorrect * 100 / test_total, test_lcorrect * 100 /
                       test_total, test_ucomlpete * 100 / test_total_inst,
                       test_lcomplete * 100 / test_total_inst, best_epoch))
                print(
                    'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                    % (test_ucorrect_nopunc, test_lcorrect_nopunc,
                       test_total_nopunc, test_ucorrect_nopunc * 100 /
                       test_total_nopunc, test_lcorrect_nopunc * 100 /
                       test_total_nopunc, test_ucomlpete_nopunc * 100 /
                       test_total_inst, test_lcomplete_nopunc * 100 /
                       test_total_inst, best_epoch))
                print(
                    'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                    % (test_root_correct, test_total_root,
                       test_root_correct * 100 / test_total_root, best_epoch))
                print('=' * 125)

                if patient >= reset:
                    logger.info('reset optimizer momentums')
                    network.load_state_dict(
                        torch.load(model_name, map_location=device))
                    scheduler.reset_state()
                    patient = 0
def main():
    args_parser = argparse.ArgumentParser(
        description='Tuning with stack pointer parser')
    args_parser.add_argument('--mode',
                             choices=['RNN', 'LSTM', 'GRU', 'FastLSTM'],
                             help='architecture of rnn',
                             required=True)
    args_parser.add_argument('--cuda', action='store_true', help='using GPU')
    args_parser.add_argument('--num_epochs',
                             type=int,
                             default=200,
                             help='Number of training epochs')
    args_parser.add_argument('--batch_size',
                             type=int,
                             default=64,
                             help='Number of sentences in each batch')
    args_parser.add_argument('--decoder_input_size',
                             type=int,
                             default=256,
                             help='Number of input units in decoder RNN.')
    args_parser.add_argument('--hidden_size',
                             type=int,
                             default=256,
                             help='Number of hidden units in RNN')
    args_parser.add_argument('--arc_space',
                             type=int,
                             default=128,
                             help='Dimension of tag space')
    args_parser.add_argument('--type_space',
                             type=int,
                             default=128,
                             help='Dimension of tag space')
    args_parser.add_argument('--encoder_layers',
                             type=int,
                             default=1,
                             help='Number of layers of encoder RNN')
    args_parser.add_argument('--decoder_layers',
                             type=int,
                             default=1,
                             help='Number of layers of decoder RNN')
    args_parser.add_argument('--num_filters',
                             type=int,
                             default=50,
                             help='Number of filters in CNN')
    args_parser.add_argument('--pos',
                             action='store_true',
                             help='use part-of-speech embedding.')
    args_parser.add_argument('--char',
                             action='store_true',
                             help='use character embedding and CNN.')
    args_parser.add_argument('--pos_dim',
                             type=int,
                             default=50,
                             help='Dimension of POS embeddings')
    args_parser.add_argument('--char_dim',
                             type=int,
                             default=50,
                             help='Dimension of Character embeddings')
    args_parser.add_argument('--opt',
                             choices=['adam', 'sgd', 'adamax'],
                             help='optimization algorithm')
    args_parser.add_argument('--learning_rate',
                             type=float,
                             default=0.001,
                             help='Learning rate')
    args_parser.add_argument('--decay_rate',
                             type=float,
                             default=0.75,
                             help='Decay rate of learning rate')
    args_parser.add_argument('--max_decay',
                             type=int,
                             default=9,
                             help='Number of decays before stop')
    args_parser.add_argument('--double_schedule_decay',
                             type=int,
                             default=5,
                             help='Number of decays to double schedule')
    args_parser.add_argument('--clip',
                             type=float,
                             default=5.0,
                             help='gradient clipping')
    args_parser.add_argument('--gamma',
                             type=float,
                             default=0.0,
                             help='weight for regularization')
    args_parser.add_argument('--epsilon',
                             type=float,
                             default=1e-8,
                             help='epsilon for adam or adamax')
    args_parser.add_argument('--coverage',
                             type=float,
                             default=0.0,
                             help='weight for coverage loss')
    args_parser.add_argument('--p_rnn',
                             nargs=2,
                             type=float,
                             required=True,
                             help='dropout rate for RNN')
    args_parser.add_argument('--p_in',
                             type=float,
                             default=0.33,
                             help='dropout rate for input embeddings')
    args_parser.add_argument('--p_out',
                             type=float,
                             default=0.33,
                             help='dropout rate for output layer')
    args_parser.add_argument('--label_smooth',
                             type=float,
                             default=1.0,
                             help='weight of label smoothing method')
    args_parser.add_argument('--skipConnect',
                             action='store_true',
                             help='use skip connection for decoder RNN.')
    args_parser.add_argument('--grandPar',
                             action='store_true',
                             default=False,
                             help='use grand parent.')
    args_parser.add_argument('--sibling',
                             action='store_true',
                             default=False,
                             help='use sibling.')
    args_parser.add_argument('--proj',
                             action='store_true',
                             help='restricted to project trees.')
    args_parser.add_argument('--sgate', action='store_true', help='use SGATE.')
    args_parser.add_argument(
        '--prior_order',
        choices=['inside_out', 'left2right', 'deep_first', 'shallow_first'],
        help='prior order of children.',
        required=True)
    args_parser.add_argument('--schedule',
                             type=int,
                             help='schedule for learning rate decay')
    args_parser.add_argument(
        '--unk_replace',
        type=float,
        default=0.,
        help='The rate to replace a singleton word with UNK')
    args_parser.add_argument('--punctuation',
                             nargs='+',
                             type=str,
                             help='List of punctuations')
    args_parser.add_argument('--beam',
                             type=int,
                             default=1,
                             help='Beam size for decoding')
    args_parser.add_argument('--word_embedding',
                             choices=['glove', 'senna', 'sskip', 'polyglot'],
                             help='Embedding for words',
                             required=True)
    args_parser.add_argument('--word_path',
                             help='path for word embedding dict')
    args_parser.add_argument(
        '--freeze',
        action='store_true',
        help='frozen the word embedding (disable fine-tuning).')
    args_parser.add_argument('--char_embedding',
                             choices=['random', 'polyglot'],
                             help='Embedding for characters',
                             required=True)
    args_parser.add_argument('--char_path',
                             help='path for character embedding dict')
    args_parser.add_argument(
        '--train')  # "data/POS-penn/wsj/split1/wsj1.train.original"
    args_parser.add_argument(
        '--dev')  # "data/POS-penn/wsj/split1/wsj1.dev.original"
    args_parser.add_argument(
        '--test')  # "data/POS-penn/wsj/split1/wsj1.test.original"
    args_parser.add_argument('--model_path',
                             help='path for saving model file.',
                             required=True)
    args_parser.add_argument('--model_name',
                             help='name for saving model file.',
                             required=True)
    args_parser.add_argument(
        '--mymodel',
        help='mymodel implemented in parsing2, example EfficientPtrNet',
        required=True)

    print('CUDA?', torch.cuda.is_available())

    SEED = 1234

    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.cuda.manual_seed(SEED)
    torch.backends.cudnn.deterministic = True
    torch.cuda.manual_seed_all(SEED)
    torch.backends.cudnn.benchmark = False

    args = args_parser.parse_args()

    logger = get_logger("PtrParser")
    MyModel = mymodel[args.mymodel]
    mode = args.mode
    train_path = args.train
    dev_path = args.dev
    test_path = args.test
    model_path = args.model_path
    model_name = args.model_name
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    input_size_decoder = args.decoder_input_size
    hidden_size = args.hidden_size
    arc_space = args.arc_space
    type_space = args.type_space
    encoder_layers = args.encoder_layers
    decoder_layers = args.decoder_layers
    num_filters = args.num_filters
    learning_rate = args.learning_rate
    opt = args.opt
    momentum = 0.9
    betas = (0.9, 0.9)
    eps = args.epsilon
    decay_rate = args.decay_rate
    clip = args.clip
    gamma = args.gamma
    cov = args.coverage
    schedule = args.schedule
    p_rnn = tuple(args.p_rnn)
    p_in = args.p_in
    p_out = args.p_out
    label_smooth = args.label_smooth
    unk_replace = args.unk_replace
    prior_order = args.prior_order
    skipConnect = args.skipConnect
    grandPar = args.grandPar
    sibling = args.sibling
    proj = args.proj
    sgate = args.sgate
    beam = args.beam
    punctuation = args.punctuation

    freeze = args.freeze
    word_embedding = args.word_embedding
    word_path = args.word_path

    use_char = args.char
    char_embedding = args.char_embedding
    char_path = args.char_path

    use_pos = args.pos
    pos_dim = args.pos_dim
    word_dict, word_dim = utils.load_embedding_dict(word_embedding, word_path)
    char_dict = None
    char_dim = args.char_dim
    if char_embedding != 'random':
        char_dict, char_dim = utils.load_embedding_dict(
            char_embedding, char_path)

    logger.info("Creating Alphabets")
    alphabet_path = os.path.join(model_path, 'alphabets/')
    model_name = os.path.join(model_path, model_name)
    word_alphabet, char_alphabet, pos_alphabet, type_alphabet = conllx_stacked_data.create_alphabets(
        alphabet_path,
        train_path,
        data_paths=[dev_path, test_path],
        max_vocabulary_size=100000,
        embedd_dict=word_dict)

    num_words = word_alphabet.size()
    num_chars = char_alphabet.size()
    num_pos = pos_alphabet.size()
    num_types = type_alphabet.size()

    logger.info("Word Alphabet Size: %d" % num_words)
    logger.info("Character Alphabet Size: %d" % num_chars)
    logger.info("POS Alphabet Size: %d" % num_pos)
    logger.info("Type Alphabet Size: %d" % num_types)

    logger.info("Reading Data")
    device = torch.device('cuda') if args.cuda else torch.device('cpu')

    data_train = conllx_stacked_data.read_stacked_data_to_tensor(
        train_path,
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        type_alphabet,
        prior_order=prior_order,
        device=device)
    num_data = sum(data_train[1])

    data_dev = conllx_stacked_data.read_stacked_data_to_tensor(
        dev_path,
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        type_alphabet,
        prior_order=prior_order,
        device=device)
    data_test = conllx_stacked_data.read_stacked_data_to_tensor(
        test_path,
        word_alphabet,
        char_alphabet,
        pos_alphabet,
        type_alphabet,
        prior_order=prior_order,
        device=device)

    punct_set = None
    if punctuation is not None:
        punct_set = set(punctuation)
        logger.info("punctuations(%d): %s" %
                    (len(punct_set), ' '.join(punct_set)))

    def construct_word_embedding_table():
        scale = np.sqrt(3.0 / word_dim)
        table = np.empty([word_alphabet.size(), word_dim], dtype=np.float32)
        table[conllx_stacked_data.UNK_ID, :] = np.zeros([1, word_dim]).astype(
            np.float32) if freeze else np.random.uniform(
                -scale, scale, [1, word_dim]).astype(np.float32)
        oov = 0
        for word, index in word_alphabet.items():
            if word in word_dict:
                embedding = word_dict[word]
            elif word.lower() in word_dict:
                embedding = word_dict[word.lower()]
            else:
                embedding = np.zeros([1, word_dim]).astype(
                    np.float32) if freeze else np.random.uniform(
                        -scale, scale, [1, word_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('word OOV: %d' % oov)
        return torch.from_numpy(table)

    def construct_char_embedding_table():
        if char_dict is None:
            return None

        scale = np.sqrt(3.0 / char_dim)
        table = np.empty([num_chars, char_dim], dtype=np.float32)
        table[conllx_stacked_data.UNK_ID, :] = np.random.uniform(
            -scale, scale, [1, char_dim]).astype(np.float32)
        oov = 0
        for char, index, in char_alphabet.items():
            if char in char_dict:
                embedding = char_dict[char]
            else:
                embedding = np.random.uniform(-scale, scale,
                                              [1, char_dim]).astype(np.float32)
                oov += 1
            table[index, :] = embedding
        print('character OOV: %d' % oov)
        return torch.from_numpy(table)

    word_table = construct_word_embedding_table()
    char_table = construct_char_embedding_table()

    window = 3
    network = MyModel(word_dim,
                      num_words,
                      char_dim,
                      num_chars,
                      pos_dim,
                      num_pos,
                      num_filters,
                      window,
                      mode,
                      input_size_decoder,
                      hidden_size,
                      encoder_layers,
                      decoder_layers,
                      num_types,
                      arc_space,
                      type_space,
                      embedd_word=word_table,
                      embedd_char=char_table,
                      p_in=p_in,
                      p_out=p_out,
                      p_rnn=p_rnn,
                      biaffine=True,
                      pos=use_pos,
                      char=use_char,
                      prior_order=prior_order,
                      skipConnect=skipConnect,
                      grandPar=grandPar,
                      sibling=sibling,
                      proj=proj,
                      sgate=sgate)

    def save_args():
        arg_path = model_name + '.arg.json'
        arguments = [
            word_dim, num_words, char_dim, num_chars, pos_dim, num_pos,
            num_filters, window, mode, input_size_decoder, hidden_size,
            encoder_layers, decoder_layers, num_types, arc_space, type_space
        ]
        kwargs = {
            'p_in': p_in,
            'p_out': p_out,
            'p_rnn': p_rnn,
            'biaffine': True,
            'pos': use_pos,
            'char': use_char,
            'prior_order': prior_order,
            'skipConnect': skipConnect,
            'grandPar': grandPar,
            'sibling': sibling,
            'proj': proj,
            'sgate': sgate
        }
        json.dump({
            'args': arguments,
            'kwargs': kwargs
        },
                  open(arg_path, 'w'),
                  indent=4)

    if freeze:
        freeze_embedding(network.word_embedd)

    network = network.to(device)

    save_args()

    pred_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)
    gold_writer = CoNLLXWriter(word_alphabet, char_alphabet, pos_alphabet,
                               type_alphabet)

    def generate_optimizer(opt, lr, params):
        params = filter(lambda param: param.requires_grad, params)
        if opt == 'adam':
            return Adam(params,
                        lr=lr,
                        betas=betas,
                        weight_decay=gamma,
                        eps=eps)
        elif opt == 'sgd':
            return SGD(params,
                       lr=lr,
                       momentum=momentum,
                       weight_decay=gamma,
                       nesterov=True)
        elif opt == 'adamax':
            return Adamax(params,
                          lr=lr,
                          betas=betas,
                          weight_decay=gamma,
                          eps=eps)
        else:
            raise ValueError('Unknown optimization algorithm: %s' % opt)

    lr = learning_rate
    optim = generate_optimizer(opt, lr, network.parameters())
    opt_info = 'opt: %s, ' % opt
    if opt == 'adam':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)
    elif opt == 'sgd':
        opt_info += 'momentum=%.2f' % momentum
    elif opt == 'adamax':
        opt_info += 'betas=%s, eps=%.1e' % (betas, eps)

    word_status = 'frozen' if freeze else 'fine tune'
    char_status = 'enabled' if use_char else 'disabled'
    pos_status = 'enabled' if use_pos else 'disabled'
    logger.info(
        "Embedding dim: word=%d (%s), char=%d (%s), pos=%d (%s)" %
        (word_dim, word_status, char_dim, char_status, pos_dim, pos_status))
    logger.info("CNN: filter=%d, kernel=%d" % (num_filters, window))
    logger.info(
        "RNN: %s, num_layer=(%d, %d), input_dec=%d, hidden=%d, arc_space=%d, type_space=%d"
        % (mode, encoder_layers, decoder_layers, input_size_decoder,
           hidden_size, arc_space, type_space))
    logger.info(
        "train: cov: %.1f, (#data: %d, batch: %d, clip: %.2f, label_smooth: %.2f, unk_repl: %.2f)"
        % (cov, num_data, batch_size, clip, label_smooth, unk_replace))
    logger.info("dropout(in, out, rnn): (%.2f, %.2f, %s)" %
                (p_in, p_out, p_rnn))
    logger.info('prior order: %s, grand parent: %s, sibling: %s, ' %
                (prior_order, grandPar, sibling))
    logger.info('RESTRICTED TO PROJECTIVE TREES: %s' % (proj))
    logger.info('using SGATE: %s' % (sgate))
    logger.info('skip connect: %s, beam: %d' % (skipConnect, beam))
    logger.info(opt_info)

    num_batches = num_data / batch_size + 1
    dev_ucorrect = 0.0
    dev_lcorrect = 0.0
    dev_ucomlpete_match = 0.0
    dev_lcomplete_match = 0.0

    dev_ucorrect_nopunc = 0.0
    dev_lcorrect_nopunc = 0.0
    dev_ucomlpete_match_nopunc = 0.0
    dev_lcomplete_match_nopunc = 0.0
    dev_root_correct = 0.0

    best_epoch = 0

    test_ucorrect = 0.0
    test_lcorrect = 0.0
    test_ucomlpete_match = 0.0
    test_lcomplete_match = 0.0

    test_ucorrect_nopunc = 0.0
    test_lcorrect_nopunc = 0.0
    test_ucomlpete_match_nopunc = 0.0
    test_lcomplete_match_nopunc = 0.0
    test_root_correct = 0.0
    test_total = 0
    test_total_nopunc = 0
    test_total_inst = 0
    test_total_root = 0

    patient = 0
    decay = 0
    max_decay = args.max_decay
    double_schedule_decay = args.double_schedule_decay
    for epoch in range(1, num_epochs + 1):
        print(
            'Epoch %d (%s, optim: %s, learning rate=%.6f, eps=%.1e, decay rate=%.2f (schedule=%d, patient=%d, decay=%d (%d, %d))): '
            % (epoch, mode, opt, lr, eps, decay_rate, schedule, patient, decay,
               max_decay, double_schedule_decay))
        train_err_arc = 0.
        #train_err_arc_non_leaf = 0.
        train_err_type = 0.
        #train_err_type_non_leaf = 0.
        train_err_cov = 0.
        train_total = 0.
        #train_total_non_leaf = 0.
        start_time = time.time()
        num_back = 0
        network.train()
        for batch in range(1, int(num_batches + 1)):
            input_encoder, input_decoder = conllx_stacked_data.get_batch_stacked_tensor(
                data_train, batch_size, unk_replace=unk_replace)
            word, char, pos, heads, types, masks_e, lengths_e = input_encoder
            stacked_heads, children, sibling, stacked_types, skip_connect, masks_d, lengths_d = input_decoder

            optim.zero_grad()
            loss_arc, \
            loss_type, \
            loss_cov, num = network.loss(word, char, pos, heads, stacked_heads, children, sibling, stacked_types, label_smooth,
                                                            skip_connect=skip_connect, mask_e=masks_e, length_e=lengths_e, mask_d=masks_d, length_d=lengths_d)
            #loss_arc = loss_arc_leaf + loss_arc_non_leaf
            #loss_type = loss_type_leaf + loss_type_non_leaf
            loss = loss_arc + loss_type + cov * loss_cov
            loss.backward()
            clip_grad_norm_(network.parameters(), clip)
            optim.step()

            with torch.no_grad():
                train_err_arc += loss_arc
                #train_err_arc_non_leaf += loss_arc_non_leaf * num_non_leaf

                train_err_type += loss_type
                #train_err_type_non_leaf += loss_type_non_leaf * num_non_leaf

                train_err_cov += loss_cov * num

                train_total += num
                #train_total_non_leaf += num_non_leaf

            time_ave = (time.time() - start_time) / batch
            time_left = (num_batches - batch) * time_ave

            # update log
            if batch % 10 == 0:
                sys.stdout.write("\b" * num_back)
                sys.stdout.write(" " * num_back)
                sys.stdout.write("\b" * num_back)
                err_arc = train_err_arc / train_total
                #err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf
                #err_arc = err_arc_leaf + err_arc_non_leaf

                err_type = train_err_type / train_total
                #err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf
                #err_type = err_type_leaf + err_type_non_leaf

                err_cov = train_err_cov / train_total

                err = err_arc + err_type + cov * err_cov
                log_info = 'train: %d/%d loss: %.4f, arc: %.4f, type: %.4f, coverage: %.4f, time left (estimated): %.2fs' % (
                    batch, num_batches, err, err_arc, err_type, err_cov,
                    time_left)
                sys.stdout.write(log_info)
                sys.stdout.flush()
                num_back = len(log_info)

        sys.stdout.write("\b" * num_back)
        sys.stdout.write(" " * num_back)
        sys.stdout.write("\b" * num_back)
        err_arc = train_err_arc / train_total
        #err_arc_non_leaf = train_err_arc_non_leaf / train_total_non_leaf
        #err_arc = err_arc_leaf + err_arc_non_leaf

        err_type = train_err_type / train_total
        #err_type_non_leaf = train_err_type_non_leaf / train_total_non_leaf
        #err_type = err_type_leaf + err_type_non_leaf

        err_cov = train_err_cov / train_total

        err = err_arc + err_type + cov * err_cov
        print(
            'train: %d loss: %.4f, arc: %.4f, type: %.4f, coverage: %.4f, time: %.2fs'
            % (num_batches, err, err_arc, err_type, err_cov,
               time.time() - start_time))

        if epoch < 2:
            pass
        elif epoch < 100:
            #if epoch % 20 != 0:
            if epoch % 40 != 0:
                continue
        elif epoch < 200:
            #if epoch % 2 != 0:
            if epoch % 20 != 0:
                continue
        elif epoch < 300:
            if epoch % 10 != 0:
                continue

        # evaluate performance on dev data
        with torch.no_grad():
            print('Evaluating performance on dev set...')
            network.eval()
            pred_filename = 'pred_dev%d' % (epoch)
            pred_filename = os.path.join(model_path, pred_filename)
            pred_writer.start(pred_filename)
            gold_filename = 'gold_dev%d' % (epoch)
            gold_filename = os.path.join(model_path, gold_filename)
            gold_writer.start(gold_filename)

            dev_ucorr = 0.0
            dev_lcorr = 0.0
            dev_total = 0
            dev_ucomlpete = 0.0
            dev_lcomplete = 0.0
            dev_ucorr_nopunc = 0.0
            dev_lcorr_nopunc = 0.0
            dev_total_nopunc = 0
            dev_ucomlpete_nopunc = 0.0
            dev_lcomplete_nopunc = 0.0
            dev_root_corr = 0.0
            dev_total_root = 0.0
            dev_total_inst = 0.0
            for batch in conllx_stacked_data.iterate_batch_stacked_variable(
                    data_dev, batch_size):
                input_encoder, _ = batch
                word, char, pos, heads, types, masks, lengths = input_encoder
                heads_pred, types_pred, _, _ = network.decode(
                    word,
                    char,
                    pos,
                    mask=masks,
                    length=lengths,
                    beam=beam,
                    leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS)

                word = word.cpu().numpy()
                pos = pos.cpu().numpy()
                lengths = lengths.cpu().numpy()
                heads = heads.cpu().numpy()
                types = types.cpu().numpy()

                pred_writer.write(word,
                                  pos,
                                  heads_pred,
                                  types_pred,
                                  lengths,
                                  symbolic_root=True)
                gold_writer.write(word,
                                  pos,
                                  heads,
                                  types,
                                  lengths,
                                  symbolic_root=True)

                stats, stats_nopunc, stats_root, num_inst = parser.eval(
                    word,
                    pos,
                    heads_pred,
                    types_pred,
                    heads,
                    types,
                    word_alphabet,
                    pos_alphabet,
                    lengths,
                    punct_set=punct_set,
                    symbolic_root=True)
                ucorr, lcorr, total, ucm, lcm = stats
                ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
                corr_root, total_root = stats_root

                dev_ucorr += ucorr
                dev_lcorr += lcorr
                dev_total += total
                dev_ucomlpete += ucm
                dev_lcomplete += lcm

                dev_ucorr_nopunc += ucorr_nopunc
                dev_lcorr_nopunc += lcorr_nopunc
                dev_total_nopunc += total_nopunc
                dev_ucomlpete_nopunc += ucm_nopunc
                dev_lcomplete_nopunc += lcm_nopunc

                dev_root_corr += corr_root
                dev_total_root += total_root

                dev_total_inst += num_inst

            pred_writer.close()
            gold_writer.close()
            print(
                'W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%'
                % (dev_ucorr, dev_lcorr, dev_total, dev_ucorr * 100 /
                   dev_total, dev_lcorr * 100 / dev_total, dev_ucomlpete *
                   100 / dev_total_inst, dev_lcomplete * 100 / dev_total_inst))
            print(
                'Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%%'
                %
                (dev_ucorr_nopunc, dev_lcorr_nopunc, dev_total_nopunc,
                 dev_ucorr_nopunc * 100 / dev_total_nopunc, dev_lcorr_nopunc *
                 100 / dev_total_nopunc, dev_ucomlpete_nopunc * 100 /
                 dev_total_inst, dev_lcomplete_nopunc * 100 / dev_total_inst))
            print('Root: corr: %d, total: %d, acc: %.2f%%' %
                  (dev_root_corr, dev_total_root,
                   dev_root_corr * 100 / dev_total_root))

            if dev_lcorrect_nopunc < dev_lcorr_nopunc or (
                    dev_lcorrect_nopunc == dev_lcorr_nopunc
                    and dev_ucorrect_nopunc < dev_ucorr_nopunc):
                dev_ucorrect_nopunc = dev_ucorr_nopunc
                dev_lcorrect_nopunc = dev_lcorr_nopunc
                dev_ucomlpete_match_nopunc = dev_ucomlpete_nopunc
                dev_lcomplete_match_nopunc = dev_lcomplete_nopunc

                dev_ucorrect = dev_ucorr
                dev_lcorrect = dev_lcorr
                dev_ucomlpete_match = dev_ucomlpete
                dev_lcomplete_match = dev_lcomplete

                dev_root_correct = dev_root_corr

                best_epoch = epoch
                patient = 0
                # torch.save(network, model_name)
                torch.save(network.state_dict(), model_name)

                print('Evaluating performance on test set...')
                pred_filename = 'pred_test%d' % (epoch)
                pred_filename = os.path.join(model_path, pred_filename)
                pred_writer.start(pred_filename)
                gold_filename = 'gold_test%d' % (epoch)
                gold_filename = os.path.join(model_path, gold_filename)
                gold_writer.start(gold_filename)

                test_ucorrect = 0.0
                test_lcorrect = 0.0
                test_ucomlpete_match = 0.0
                test_lcomplete_match = 0.0
                test_total = 0

                test_ucorrect_nopunc = 0.0
                test_lcorrect_nopunc = 0.0
                test_ucomlpete_match_nopunc = 0.0
                test_lcomplete_match_nopunc = 0.0
                test_total_nopunc = 0
                test_total_inst = 0

                test_root_correct = 0.0
                test_total_root = 0
                for batch in conllx_stacked_data.iterate_batch_stacked_variable(
                        data_test, batch_size):
                    input_encoder, _ = batch
                    word, char, pos, heads, types, masks, lengths = input_encoder
                    heads_pred, types_pred, _, _ = network.decode(
                        word,
                        char,
                        pos,
                        mask=masks,
                        length=lengths,
                        beam=beam,
                        leading_symbolic=conllx_stacked_data.NUM_SYMBOLIC_TAGS)

                    word = word.cpu().numpy()
                    pos = pos.cpu().numpy()
                    lengths = lengths.cpu().numpy()
                    heads = heads.cpu().numpy()
                    types = types.cpu().numpy()

                    pred_writer.write(word,
                                      pos,
                                      heads_pred,
                                      types_pred,
                                      lengths,
                                      symbolic_root=True)
                    gold_writer.write(word,
                                      pos,
                                      heads,
                                      types,
                                      lengths,
                                      symbolic_root=True)

                    stats, stats_nopunc, stats_root, num_inst = parser.eval(
                        word,
                        pos,
                        heads_pred,
                        types_pred,
                        heads,
                        types,
                        word_alphabet,
                        pos_alphabet,
                        lengths,
                        punct_set=punct_set,
                        symbolic_root=True)
                    ucorr, lcorr, total, ucm, lcm = stats
                    ucorr_nopunc, lcorr_nopunc, total_nopunc, ucm_nopunc, lcm_nopunc = stats_nopunc
                    corr_root, total_root = stats_root

                    test_ucorrect += ucorr
                    test_lcorrect += lcorr
                    test_total += total
                    test_ucomlpete_match += ucm
                    test_lcomplete_match += lcm

                    test_ucorrect_nopunc += ucorr_nopunc
                    test_lcorrect_nopunc += lcorr_nopunc
                    test_total_nopunc += total_nopunc
                    test_ucomlpete_match_nopunc += ucm_nopunc
                    test_lcomplete_match_nopunc += lcm_nopunc

                    test_root_correct += corr_root
                    test_total_root += total_root

                    test_total_inst += num_inst

                pred_writer.close()
                gold_writer.close()
            else:
                if dev_ucorr_nopunc * 100 / dev_total_nopunc < dev_ucorrect_nopunc * 100 / dev_total_nopunc - 5 or patient >= schedule:
                    # network = torch.load(model_name)
                    network.load_state_dict(torch.load(model_name))
                    lr = lr * decay_rate
                    optim = generate_optimizer(opt, lr, network.parameters())
                    patient = 0
                    decay += 1
                    if decay % double_schedule_decay == 0:
                        schedule *= 2
                else:
                    patient += 1

            print(
                '----------------------------------------------------------------------------------------------------------------------------'
            )
            print(
                'best dev  W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                % (dev_ucorrect, dev_lcorrect, dev_total, dev_ucorrect * 100 /
                   dev_total, dev_lcorrect * 100 / dev_total,
                   dev_ucomlpete_match * 100 / dev_total_inst,
                   dev_lcomplete_match * 100 / dev_total_inst, best_epoch))
            print(
                'best dev  Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                % (dev_ucorrect_nopunc, dev_lcorrect_nopunc, dev_total_nopunc,
                   dev_ucorrect_nopunc * 100 / dev_total_nopunc,
                   dev_lcorrect_nopunc * 100 / dev_total_nopunc,
                   dev_ucomlpete_match_nopunc * 100 / dev_total_inst,
                   dev_lcomplete_match_nopunc * 100 / dev_total_inst,
                   best_epoch))
            print(
                'best dev  Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                % (dev_root_correct, dev_total_root,
                   dev_root_correct * 100 / dev_total_root, best_epoch))
            print(
                '----------------------------------------------------------------------------------------------------------------------------'
            )
            print(
                'best test W. Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                % (test_ucorrect, test_lcorrect, test_total, test_ucorrect *
                   100 / test_total, test_lcorrect * 100 / test_total,
                   test_ucomlpete_match * 100 / test_total_inst,
                   test_lcomplete_match * 100 / test_total_inst, best_epoch))
            print(
                'best test Wo Punct: ucorr: %d, lcorr: %d, total: %d, uas: %.2f%%, las: %.2f%%, ucm: %.2f%%, lcm: %.2f%% (epoch: %d)'
                %
                (test_ucorrect_nopunc, test_lcorrect_nopunc, test_total_nopunc,
                 test_ucorrect_nopunc * 100 / test_total_nopunc,
                 test_lcorrect_nopunc * 100 / test_total_nopunc,
                 test_ucomlpete_match_nopunc * 100 / test_total_inst,
                 test_lcomplete_match_nopunc * 100 / test_total_inst,
                 best_epoch))
            print(
                'best test Root: corr: %d, total: %d, acc: %.2f%% (epoch: %d)'
                % (test_root_correct, test_total_root,
                   test_root_correct * 100 / test_total_root, best_epoch))
            print(
                '============================================================================================================================'
            )

            if decay == max_decay:
                break