+'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_v_vec.p' print(na_type, p, d, l) cell = nm.NeuronModel(hl=int(d),\ ail=int(l),\ na_type=na_type,\ aina12=aina12_x[p],\ aina16=aina16_x[p],\ aik=aik_x[p]) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec(vec, save_data_path + file_name) nm.show_output(vec, save_figure_path + file_name) bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) with open(save_data_path+'type'+str(na_type)\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_bpv.p', 'wb') as file:
na16_map=1, aina12=aina12_x[p],\ aina16=aina16_x[p],\ aik=aik_x[p]) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec(vec, save_data_path\ +'type2_map1'\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_') nm.show_output(vec, save_figure_path\ +'type2_map1'\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_') bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) with open(save_data_path+'type2_map1'\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\
print('na12m:', na12m, '; na16m:', na16m, ';gna:', gna, 'pS/um2; len:', l, 'um;') cell = nm.NeuronModel(ail=int(l), na_type=2, na12_map=na12m, na16_map=na16m, aina12=gna, aina16=gna) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + str(na12m) + str(na16m) + '_gna_' + str(gna) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + str(na12m) + str(na16m) + 'gna_' + str(gna) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity( vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print('na12m:', na12m, '; na16m:', na16m, ';gna:', gna, 'pS/um2; dist:', d, 'um;')
fwv_dist_sum = np.zeros([len(hill_gna_x), len(dist_x)]) save_data_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/data/hna/' save_figure_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/figure/hna/' for i, gna in enumerate(hill_gna_x): for j, l in enumerate(len_x): print('hna:', gna, 'pS/um2; len:', l, 'um;') cell = nm.NeuronModel(ail=int(l), na_type=1, hna=gna) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'hna_' + str(gna) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'hna_' + str(gna) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print('hna:', gna, 'pS/um2; dist:', d, 'um;') cell = nm.NeuronModel(hl=int(d), na_type=1, hna=gna) stim = nm.attach_current_clamp(cell, amp=.7)
for i, d in enumerate(dist_x): for j, l in enumerate(len_x): print(p, d, l) cell = nm.NeuronModel(hl=int(d), \ ail=int(l), \ na_type=1, \ aina=p,\ aik=aik) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_dist_' + str(d) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_dist_' + str(d) + '_len_' + str(l) + '_') bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) with open( save_data_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_bpv.p', 'wb') as file: pickle.dump(bpv_sum, file) with open(
from neuron import h import os import pickle plt.close('all') seg = ['ais'] cell = nm.NeuronModel(dl=1000, dd=2, sl=40, sd=20, \ hl=10, hd=2, ail=40, aid=1.2, axl=1000, axd=1.2,\ dna=100, sna=100, hna=300, aina=4000, axna=300, dk=20, \ sk=20, hk=150, aik=1000, axk=150,\ na_type=6, aina12=6000, aina16=6000) stim = nm.attach_current_clamp(cell, amp=1.0) vec = nm.set_recording_vectors(cell) nm.simulate() nm.show_output(vec, None) bpv, fwv, __ = nm.cal_velocity(vec, seg) print('normal:', bpv, fwv) cell.dend1 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) cell = nm.NeuronModel(dl=1000, dd=2, sl=40, sd=20,\ hl=10, hd=2, ail=60, aid=1.2, axl=1000, axd=1.2,\ dna=100, sna=100, hna=300, aina=4000, axna=300, dk=20,\ sk=20, hk=150, aik=500, axk=150,\
print(j,l) cell = nm.NeuronModel(ail=int(l), \ na_type=na_type_i, \ na12_map=na12_map_i, \ na16_map=na16_map_i, \ aina12=aina12_i, \ aina16=aina16_i, \ aik=aik_i,\ hna=hna_i,\ hk=hk_i,\ hl = hl_i,\ hd = hd_i) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.show_output(vec, save_figure_log_path+'len_'+str(l)+'_') bpv_len_sum[0,j], fwv_len_sum[0,j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print(j,d) cell = nm.NeuronModel(hl=int(d), \ na_type=na_type_i, \ na12_map=na12_map_i, \
# na16_map=na16_map_i, \ aina12=aina12_ii, \ aina16=aina16_i, \ aik=aik_i,\ hna=hna_i,\ hk=hk_i,\ hl = hl_i,\ hd = hd_i) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'aina12_' + str(aina12_ii) + '_dist_' + str(hl_i) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'aina12_' + str(aina12_ii) + '_dist_' + str(hl_i) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print('aina12:', aina12_ii, j, d) cell = nm.NeuronModel(hl=int(d), \