Esempio n. 1
0
    def __init__(
        self,
        x_size: int,
        y_size: int,
        arch: str = 'A',  # ['PRQ', 'UMNN']
        num_transforms: int = 5,
        lu_linear: bool = False,
        moments: Tuple[torch.Tensor, torch.Tensor] = None,
        **kwargs,
    ):
        kwargs.setdefault('hidden_features', 64)
        kwargs.setdefault('num_blocks', 2)
        kwargs.setdefault('use_residual_blocks', False)
        kwargs.setdefault('use_batch_norm', False)

        kwargs['activation'] = ACTIVATIONS[kwargs.get('activation', 'ReLU')]()

        if arch == 'PRQ':
            kwargs['tails'] = 'linear'
            kwargs.setdefault('num_bins', 8)
            kwargs.setdefault('tail_bound', 1.)

            tfrm = transforms.MaskedPiecewiseRationalQuadraticAutoregressiveTransform
        elif arch == 'UMNN':
            kwargs.setdefault('integrand_net_layers', [64, 64, 64])
            kwargs.setdefault('cond_size', 32)
            kwargs.setdefault('nb_steps', 32)

            tfrm = transforms.MaskedUMNNAutoregressiveTransform
        else:  # arch == 'A'
            tfrm = transforms.MaskedAffineAutoregressiveTransform

        compose = []

        if moments is not None:
            shift, scale = moments
            compose.append(
                transforms.PointwiseAffineTransform(-shift / scale, 1 / scale))

        for _ in range(num_transforms if x_size > 1 else 1):
            compose.extend([
                tfrm(
                    features=x_size,
                    context_features=y_size,
                    **kwargs,
                ),
                transforms.RandomPermutation(features=x_size),
            ])

            if lu_linear:
                compose.append(transforms.LULinear(x_size,
                                                   identity_init=True), )

        transform = transforms.CompositeTransform(compose)
        distribution = distributions.StandardNormal((x_size, ))

        super().__init__(transform, distribution)
Esempio n. 2
0
def create_flow(flow_type):
    distribution = distributions.StandardNormal((3,))

    if flow_type == 'lu_flow':
        transform = transforms.CompositeTransform([
            transforms.RandomPermutation(3),
            transforms.LULinear(3, identity_init=False)
        ])
    elif flow_type == 'qr_flow':
        transform = transforms.QRLinear(3, num_householder=3)
    else:
        raise RuntimeError('Unknown type')

    return flows.Flow(transform, distribution)
Esempio n. 3
0
def create_linear_transform(param_dim):
    """Create the composite linear transform PLU.

    Arguments:
        input_dim {int} -- dimension of the space

    Returns:
        Transform -- nde.Transform object
    """

    return transforms.CompositeTransform([
        transforms.RandomPermutation(features=param_dim),
        transforms.LULinear(param_dim, identity_init=True)
    ])
Esempio n. 4
0
def _make_scalar_linear_transform(transform, features):
    if transform == "permutation":
        return transforms.RandomPermutation(features=features)
    elif transform == "lu":
        return transforms.CompositeTransform(
            [transforms.RandomPermutation(features=features), transforms.LULinear(features, identity_init=True)]
        )
    elif transform == "svd":
        return transforms.CompositeTransform(
            [
                transforms.RandomPermutation(features=features),
                transforms.SVDLinear(features, num_householder=10, identity_init=True),
            ]
        )
    else:
        raise ValueError
Esempio n. 5
0
 def _create_linear_transform(self):
     return transforms.CompositeTransform([
         transforms.RandomPermutation(features=self.dimensions),
         transforms.LULinear(self.dimensions, identity_init=True)
     ])
def neural_net_nsf(
    self,
    hidden_features,
    num_blocks,
    num_bins,
    xDim,
    thetaDim,
    batch_x=None,
    batch_theta=None,
    tail=3.,
    bounded=False,
    embedding_net=torch.nn.Identity()) -> torch.nn.Module:
    """Builds NSF p(x|y).

    Args:
        batch_x: Batch of xs, used to infer dimensionality and (optional) z-scoring.
        batch_y: Batch of ys, used to infer dimensionality and (optional) z-scoring.
        z_score_x: Whether to z-score xs passing into the network.
        z_score_y: Whether to z-score ys passing into the network.
        hidden_features: Number of hidden features.
        num_transforms: Number of transforms.
        embedding_net: Optional embedding network for y.
        kwargs: Additional arguments that are passed by the build function but are not
            relevant for maf and are therefore ignored.

    Returns:
        Neural network.
    """

    basic_transform = [
        transforms.CompositeTransform([
            transforms.PiecewiseRationalQuadraticCouplingTransform(
                mask=create_alternating_binary_mask(features=xDim,
                                                    even=(i % 2 == 0)).to(
                                                        self.args.device),
                transform_net_create_fn=lambda in_features, out_features: nets.
                ResidualNet(
                    in_features=in_features,
                    out_features=out_features,
                    hidden_features=hidden_features,
                    context_features=thetaDim,
                    num_blocks=2,
                    activation=torch.relu,
                    dropout_probability=0.,
                    use_batch_norm=False,
                ),
                num_bins=num_bins,
                tails='linear',
                tail_bound=tail,
                apply_unconditional_transform=False,
            ),
            transforms.RandomPermutation(features=xDim,
                                         device=self.args.device),
            transforms.LULinear(xDim, identity_init=True),
        ]) for i in range(num_blocks)
    ]

    transform = transforms.CompositeTransform(basic_transform).to(
        self.args.device)

    if batch_theta != None:
        if bounded:
            transform_bounded = transforms.Logit(self.args.device)
            if self.sim.min[0].item() != 0 or self.sim.max[0].item() != 1:
                transfomr_affine = transforms.PointwiseAffineTransform(
                    shift=-self.sim.min / (self.sim.max - self.sim.min),
                    scale=1. / (self.sim.max - self.sim.min))
                transform = transforms.CompositeTransform(
                    [transfomr_affine, transform_bounded, transform])
            else:
                transform = transforms.CompositeTransform(
                    [transform_bounded, transform])
        else:
            transform_zx = standardizing_transform(batch_x)
            transform = transforms.CompositeTransform(
                [transform_zx, transform])
        embedding_net = torch.nn.Sequential(standardizing_net(batch_theta),
                                            embedding_net)
        distribution = distributions_.StandardNormal((xDim, ),
                                                     self.args.device)
        neural_net = flows.Flow(self,
                                transform,
                                distribution,
                                embedding_net=embedding_net).to(
                                    self.args.device)
    else:
        distribution = distributions_.StandardNormal((xDim, ),
                                                     self.args.device)
        neural_net = flows.Flow(self, transform,
                                distribution).to(self.args.device)

    return neural_net
Esempio n. 7
0
def get_flow(
    model: str,
    dim_distribution: int,
    dim_context: Optional[int] = None,
    embedding: Optional[torch.nn.Module] = None,
    hidden_features: int = 50,
    made_num_mixture_components: int = 10,
    made_num_blocks: int = 4,
    flow_num_transforms: int = 5,
    mean=0.0,
    std=1.0,
) -> torch.nn.Module:
    """Density estimator

    Args:
        model: Model, one of maf / made / nsf
        dim_distribution: Dim of distribution
        dim_context: Dim of context
        embedding: Embedding network
        hidden_features: For all, number of hidden features
        made_num_mixture_components: For MADEs only, number of mixture components
        made_num_blocks: For MADEs only, number of blocks
        flow_num_transforms: For flows only, number of transforms
        mean: For normalization
        std: For normalization

    Returns:
        Neural network
    """
    standardizing_transform = transforms.AffineTransform(shift=-mean / std,
                                                         scale=1 / std)

    features = dim_distribution
    context_features = dim_context

    if model == "made":
        transform = standardizing_transform
        distribution = distributions_.MADEMoG(
            features=features,
            hidden_features=hidden_features,
            context_features=context_features,
            num_blocks=made_num_blocks,
            num_mixture_components=made_num_mixture_components,
            use_residual_blocks=True,
            random_mask=False,
            activation=torch.relu,
            dropout_probability=0.0,
            use_batch_norm=False,
            custom_initialization=True,
        )
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "maf":
        transform = transforms.CompositeTransform([
            transforms.CompositeTransform([
                transforms.MaskedAffineAutoregressiveTransform(
                    features=features,
                    hidden_features=hidden_features,
                    context_features=context_features,
                    num_blocks=2,
                    use_residual_blocks=False,
                    random_mask=False,
                    activation=torch.tanh,
                    dropout_probability=0.0,
                    use_batch_norm=True,
                ),
                transforms.RandomPermutation(features=features),
            ]) for _ in range(flow_num_transforms)
        ])

        transform = transforms.CompositeTransform(
            [standardizing_transform, transform])

        distribution = distributions_.StandardNormal((features, ))
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "nsf":
        transform = transforms.CompositeTransform([
            transforms.CompositeTransform([
                transforms.PiecewiseRationalQuadraticCouplingTransform(
                    mask=create_alternating_binary_mask(features=features,
                                                        even=(i % 2 == 0)),
                    transform_net_create_fn=lambda in_features, out_features:
                    nets.ResidualNet(
                        in_features=in_features,
                        out_features=out_features,
                        hidden_features=hidden_features,
                        context_features=context_features,
                        num_blocks=2,
                        activation=torch.relu,
                        dropout_probability=0.0,
                        use_batch_norm=False,
                    ),
                    num_bins=10,
                    tails="linear",
                    tail_bound=3.0,
                    apply_unconditional_transform=False,
                ),
                transforms.LULinear(features, identity_init=True),
            ]) for i in range(flow_num_transforms)
        ])

        transform = transforms.CompositeTransform(
            [standardizing_transform, transform])

        distribution = distributions_.StandardNormal((features, ))
        neural_net = flows.Flow(transform, distribution, embedding)

    elif model == "nsf_bounded":

        transform = transforms.CompositeTransform([
            transforms.CompositeTransform([
                transforms.PiecewiseRationalQuadraticCouplingTransform(
                    mask=create_alternating_binary_mask(
                        features=dim_distribution, even=(i % 2 == 0)),
                    transform_net_create_fn=lambda in_features, out_features:
                    nets.ResidualNet(
                        in_features=in_features,
                        out_features=out_features,
                        hidden_features=hidden_features,
                        context_features=context_features,
                        num_blocks=2,
                        activation=F.relu,
                        dropout_probability=0.0,
                        use_batch_norm=False,
                    ),
                    num_bins=10,
                    tails="linear",
                    tail_bound=np.sqrt(
                        3),  # uniform with sqrt(3) bounds has unit-variance
                    apply_unconditional_transform=False,
                ),
                transforms.RandomPermutation(features=dim_distribution),
            ]) for i in range(flow_num_transforms)
        ])

        transform = transforms.CompositeTransform(
            [standardizing_transform, transform])

        distribution = StandardUniform(shape=(dim_distribution, ))
        neural_net = flows.Flow(transform, distribution, embedding)

    else:
        raise ValueError

    return neural_net