def get_round_mbo(self, index, mbo, model): """ get round observations, with simulated galaxy images """ new_mbo = MultiBandObsList() bpars=zeros(6) n=Namer(model) pname=n(self.pname) pars=self.model_fits[pname][index].copy() if self['use_logpars']: pars[4:] = exp(pars[4:]) for band in xrange(self.nband): bpars[0:5] = pars[0:5] bpars[5] = pars[5+band] obslist=mbo[band] new_obslist = self.get_round_band_obslist(bpars,model,obslist) new_mbo.append( new_obslist ) factor=ngmix.shape.get_round_factor(pars[2], pars[3]) Tround = pars[4]*factor pars_round=pars.copy() pars_round[2]=0.0 pars_round[3]=0.0 pars_round[4]=Tround return new_mbo, pars_round
def _get_multi_band_observations(self, mindex): """ Get an ObsList object for the Coadd observations Get a MultiBandObsList object for the SE observations. """ coadd_mb_obs_list = MultiBandObsList() mb_obs_list = MultiBandObsList() for band in self.iband: cobs_list, obs_list = self._get_band_observations(band, mindex) coadd_mb_obs_list.append(cobs_list) mb_obs_list.append(obs_list) meta_row = self._get_meta_row() meta_row["id"][0] = self.meds_list[0]["id"][mindex] meta_row["number"][0] = self.meds_list[0]["number"][mindex] meta_row["nimage_tot"][0, :] = numpy.array( [self.meds_list[b]["ncutout"][mindex] - 1 for b in xrange(self.conf["nband"])], dtype="i4" ) meta = {"meta_data": meta_row, "meds_index": mindex, "id": self.meds_list[0]["id"][mindex], "obj_flags": 0} coadd_mb_obs_list.update_meta_data(meta) mb_obs_list.update_meta_data(meta) return coadd_mb_obs_list, mb_obs_list
def get_mb_obs_list(self, index): """ raise MissingFit if any bands missing or no cutouts """ mbo=MultiBandObsList() rev=self.rev_number ncut=self.h_number[index] print(" number:",index+1,"total cutouts:",ncut) i=index if rev[i] != rev[i+1]: w=rev[ rev[i]:rev[i+1] ] ed=self.epoch_data[w] for band in xrange(self.nband): obslist=self.get_band_obslist(index, band, ed) mbo.append( obslist ) else: raise MissingFit("band missing") return mbo
def _trim_images(self, mbo_input, censky): """ cen in sky coords, relative to jacobian center """ mbo = MultiBandObsList() for obslist in mbo_input: new_obslist=ObsList() for obs in obslist: j=obs.jacobian scale=j.get_scale() cenpix=array( j.get_cen() ) new_cen = cenpix + censky/scale #print("cen0:",cenpix,"newcen:",new_cen) new_im=_trim_image(obs.image, new_cen) new_wt=_trim_image(obs.weight, new_cen) new_j = j.copy() new_j.set_cen(row=new_cen[0], col=new_cen[1]) newobs = Observation( new_im, weight=new_wt, jacobian=new_j, psf=obs.psf, ) new_obslist.append( newobs ) mbo.append( new_obslist ) return mbo
def _get_multi_band_observations(self, mindex): """ Get an ObsList object for the Coadd observations Get a MultiBandObsList object for the SE observations. """ coadd_mb_obs_list=MultiBandObsList() mb_obs_list=MultiBandObsList() for band in self.iband: cobs_list, obs_list = self._get_band_observations(band, mindex) coadd_mb_obs_list.append(cobs_list) mb_obs_list.append(obs_list) meta_row = self._get_meta_row() meta_row['id'][0] = self.meds_list[0]['id'][mindex] meta_row['number'][0] = self.meds_list[0]['number'][mindex] # to account for max_cutouts limit, we count the actual number #meta_row['nimage_tot'][0,:] = numpy.array([self.meds_list[b]['ncutout'][mindex]-1 for b in xrange(self.conf['nband'])],dtype='i4') meta_row['nimage_tot'][0,:] = numpy.array([len(mb_obs_list[b]) for b in xrange(self.conf['nband'])],dtype='i4') meta = {'meta_data':meta_row,'meds_index':mindex,'id':self.meds_list[0]['id'][mindex],'obj_flags':0} coadd_mb_obs_list.update_meta_data(meta) mb_obs_list.update_meta_data(meta) return coadd_mb_obs_list, mb_obs_list
def mbobs(): mbobs = MultiBandObsList() for i in range(3): ol = ObsList() for j in range(4): o = Observation(image=np.ones((32, 32)) * (j + 1), weight=np.ones((32, 32)) * (j + 1), jacobian=ngmix.DiagonalJacobian(scale=0.25, row=0, col=0)) ol.append(o) mbobs.append(ol) return mbobs
def _get_good_mb_obs_list(self, mb_obs_list): new_mb_obs_list = MultiBandObsList() for obs_list in mb_obs_list: new_obs_list = ObsList() for obs in obs_list: if obs.meta['flags'] == 0: new_obs_list.append(obs) new_mb_obs_list.append(new_obs_list) new_mb_obs_list.update_meta_data(mb_obs_list.meta) new_mb_obs_list.update_meta_data({'old_mb_obs_list': mb_obs_list}) return new_mb_obs_list
def _check_flags(self, mbobs): flags = self['metacal'].get('bmask_flags', None) passed_flags = True _mbobs = None if flags is not None: _mbobs = MultiBandObsList() _mbobs.update_meta_data(mbobs.meta) for obslist in mbobs: _obslist = ObsList() _obslist.update_meta_data(obslist.meta) for obs in obslist: msk = (obs.bmask & flags) != 0 if np.any(msk): logger.info(" EDGE HIT") else: _obslist.append(obs) passed_flags = True _mbobs.append(_obslist) # all bands have to have at least one obs for ol in _mbobs: if len(ol) == 0: passed_flags = False return passed_flags, _mbobs
def _make_mbobs(im, cen): dx = cen[0] - int(cen[0] + 0.5) dy = cen[1] - int(cen[1] + 0.5) xlow = int(int(cen[0] + 0.5) - nstamp_cen) ylow = int(int(cen[1] + 0.5) - nstamp_cen) _im = im[ylow:ylow + nstamp, xlow:xlow + nstamp] jac = DiagonalJacobian( scale=wcs.scale, x=nstamp_cen + dx, y=nstamp_cen + dy, ) obs = Observation(image=_im, jacobian=jac, psf=psf_obs, weight=np.ones_like(_im), noise=rng.normal(size=_im.shape) * noise) mbobs = MultiBandObsList() obsl = ObsList() obsl.append(obs) mbobs.append(obsl) return mbobs
def _strip_coadd(mbobs): _mbobs = MultiBandObsList() _mbobs.update_meta_data(mbobs.meta) for ol in mbobs: _ol = ObsList() _ol.update_meta_data(ol.meta) for i in range(1, len(ol)): _ol.append(ol[i]) _mbobs.append(_ol) return _mbobs
def _strip_zero_flux(mbobs): _mbobs = MultiBandObsList() _mbobs.update_meta_data(mbobs.meta) for ol in mbobs: _ol = ObsList() _ol.update_meta_data(ol.meta) for i in range(len(ol)): if np.sum(ol[i].image) > 0: _ol.append(ol[i]) _mbobs.append(_ol) return _mbobs
def get_model_obs( *, rng, model, noise=0.0, psf_model='turb', psf_noise=1.0e-6, set_psf_gmix=False, set_templates=False, set_psf_templates=False, nepoch=None, nband=None, star=False, ): if nband is not None: do_mbobs = True if nepoch is None: nepoch = 1 else: do_mbobs = False nband = 1 if nepoch is not None: do_obslist = True else: do_obslist = False nepoch = 1 if star: T = 0.0 else: T = 0.27 g1 = 0.1 g2 = 0.05 flux = 100.0 off = 0.5 # not offset from the jacobian center pars = [0.0, 0.0, g1, g2, T] + [flux]*nband gm = GMixModel(pars[0:6], model) mbobs = MultiBandObsList() for iband in range(nband): obslist = ObsList() for i in range(nepoch): off1_pix, off2_pix = rng.uniform(low=-off, high=off, size=2) dims = [32, 32] jcen = (np.array(dims) - 1.0) / 2.0 jacob = DiagonalJacobian( scale=PIXEL_SCALE, row=jcen[0] + off1_pix, col=jcen[1] + off2_pix, ) psf_ret = get_psf_obs(rng=rng, model=psf_model, noise=psf_noise) if set_psf_gmix: psf_ret['obs'].set_gmix(psf_ret['gmix']) if set_psf_templates: psf_ret['obs'].template = psf_ret['gmix'].make_image( dims, jacobian=jacob, ) gmconv = gm.convolve(psf_ret['gmix']) im0 = gmconv.make_image(dims, jacobian=jacob) im = im0 + rng.normal(size=im0.shape, scale=noise) if noise == 0.0: weight = im*0 + 1.0/1.0e-12 else: weight = im*0 + 1.0/noise**2 obs = Observation( im, weight=weight, jacobian=jacob, psf=psf_ret['obs'], ) if set_templates: obs.template = im0 obslist.append(obs) mbobs.append(obslist) ret = { 'gmix': gm, 'pars': pars, 'psf_data': psf_ret, } if do_mbobs: ret['obs'] = mbobs else: obslist = mbobs[0] if not do_obslist: obs = obslist[0] ret['obs'] = obs else: ret['obs'] = obslist return ret
def _get_multi_band_observations(self, mindex): """ Get an ObsList object for the Coadd observations Get a MultiBandObsList object for the SE observations. """ coadd_mb_obs_list = MultiBandObsList() mb_obs_list = MultiBandObsList() for band in self.iband: cobs_list, obs_list = self._get_band_observations(band, mindex) coadd_mb_obs_list.append(cobs_list) mb_obs_list.append(obs_list) meta_row = self._get_meta_row() meta_row['id'][0] = self.meds_list[0]['id'][mindex] meta_row['number'][0] = self.meds_list[0]['number'][mindex] meta_row['ra'][0] = self.meds_list[0]['ra'][mindex] meta_row['dec'][0] = self.meds_list[0]['dec'][mindex] # to account for max_cutouts limit, we count the actual number #meta_row['nimage_tot'][0,:] = numpy.array([self.meds_list[b]['ncutout'][mindex]-1 for b in xrange(self.conf['nband'])],dtype='i4') meta_row['nimage_tot'][0, :] = numpy.array( [len(mb_obs_list[b]) for b in xrange(self.conf['nband'])], dtype='i4') meta = { 'meta_data': meta_row, 'meds_index': mindex, 'id': self.meds_list[0]['id'][mindex], 'obj_flags': 0 } coadd_mb_obs_list.update_meta_data(meta) mb_obs_list.update_meta_data(meta) return coadd_mb_obs_list, mb_obs_list