Esempio n. 1
0
def test_convolution(transformer_factory):
    """
    test convolution forward path
    """
    N = 128
    C, K = 3, 8
    D, T = 1, 1
    H = W = 32
    R = S = 2

    padding = dict(pad_d=0, pad_h=0, pad_w=0)
    strides = dict(str_d=1, str_h=1, str_w=1)
    conv_params = padding.copy()
    conv_params.update(strides)

    ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N])
    ax_f = ng.make_axes([ax.C, ax.T, ax.R, ax.S, ax.K])
    ax_i.set_shape((C, D, H, W, N))
    ax_f.set_shape((C, T, R, S, K))
    ax_o = ng.make_axes([
        ng.make_axis(ax_f.role_axes(ar.Channelout)[0].length,
                     name='C',
                     roles=[ar.Channel]),
        spatial_axis(ax_i,
                     ax_f,
                     padding['pad_d'],
                     strides['str_d'],
                     role=ar.Depth),
        spatial_axis(ax_i,
                     ax_f,
                     padding['pad_h'],
                     strides['str_h'],
                     role=ar.Height),
        spatial_axis(ax_i,
                     ax_f,
                     padding['pad_w'],
                     strides['str_w'],
                     role=ar.Width), ax.N
    ])

    inputs = ng.placeholder(axes=ax_i)
    filters = ng.placeholder(axes=ax_f)

    # randomly initialize
    input_value = rng.uniform(-1, 1, ax_i)
    filter_value = rng.uniform(-1, 1, ax_f)

    assert input_value.shape == ax_i.lengths
    assert filter_value.shape == ax_f.lengths

    inputs = ng.placeholder(ax_i)
    filters = ng.placeholder(ax_f)

    output = ng.convolution(conv_params, inputs, filters, axes=ax_o)
    targets = ng.placeholder(axes=output.axes)

    costs = ng.cross_entropy_binary(ng.sigmoid(output), targets)
    error = ng.sum(costs, out_axes=()) / ng.batch_size(costs)
    d_inputs = ng.deriv(error, inputs)
    d_filters = ng.deriv(error, filters)

    targets_value = rng.uniform(.1, 0.9, output.axes)

    conv_executor = executor([output, error, d_inputs, d_filters], inputs,
                             filters, targets)
    result_ng, err_ng, gradI_ng, gradF_ng = conv_executor(
        input_value, filter_value, targets_value)

    # Now compute reference values via NEON
    NervanaObject.be.bsz = N
    neon_layer = Convolution(fshape=(R, S, K),
                             padding=padding,
                             strides=strides)

    inp = neon_layer.be.array(input_value.reshape(C * H * W * D, N))
    neon_layer.W = neon_layer.be.array(filter_value.reshape(C * R * S * T, K))
    neon_layer.dW = neon_layer.be.empty_like(neon_layer.W)
    neon_layer.configure((C, H, W))
    neon_layer.prev_layer = True
    neon_layer.allocate()
    neon_layer.set_deltas(DummyDeltaBuffers())

    result_ne = neon_layer.fprop(inp).get().reshape(output.axes.lengths)

    act_result_ne = 1. / (1.0 + np.exp(-result_ne))
    err = neon_layer.be.array(
        (act_result_ne - targets_value).reshape(-1, N) / float(N))
    gradI_ne = neon_layer.bprop(err).get().reshape(ax_i.lengths)
    gradF_ne = neon_layer.dW.get().reshape(ax_f.lengths)

    # Compare fprop
    np.testing.assert_allclose(result_ng, result_ne, rtol=0, atol=1e-6)

    # Compare bprop
    np.testing.assert_allclose(gradI_ng, gradI_ne, rtol=0, atol=1e-6)

    # Compare update
    np.testing.assert_allclose(gradF_ng, gradF_ne, rtol=0, atol=1e-4)
Esempio n. 2
0
    def Conv2D(self, tf_node, inputs):
        """
        Computes a 2-D convolution given 4D input and filter tensors.

        Arguments:
            tf_node: NodeDef object, the tensorflow node to convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.

        Inputs to tf_node:
            input, filter

        TODO: assume default tensorflow layout NHWC, RSCK,
              need to support NCHW as well
              need to clean up / merge with maxpool

        Notes on output shape:
            https://www.tensorflow.org/api_docs/python/nn.html#convolution
        """
        image, weight = inputs

        # TODO: currently NHWC only
        assert tf_node.attr['data_format'].s.decode("ascii") == "NHWC"

        # set axes shape
        ax_N = ng.make_axis(batch=True)
        ax_C = ng.make_axis(roles=[ar.Channel])
        ax_D = ng.make_axis(roles=[ar.Depth])
        ax_H = ng.make_axis(roles=[ar.Height])
        ax_W = ng.make_axis(roles=[ar.Width])

        ax_T = ng.make_axis(roles=[ar.Depth])
        ax_R = ng.make_axis(roles=[ar.Height])
        ax_S = ng.make_axis(roles=[ar.Width])
        ax_K = ng.make_axis(roles=[ar.Channelout])

        ng.make_axes([ax_N, ax_H, ax_W, ax_C]).set_shape(image.axes.lengths)
        ng.make_axes([ax_R, ax_S, ax_C, ax_K]).set_shape(weight.axes.lengths)
        ax_D.length = 1
        ax_T.length = 1

        # strides params
        tf_strides = [int(s) for s in list(tf_node.attr['strides'].list.i)]
        if len(tf_strides) != 4:
            raise ValueError("Length of strides my be 4.")
        if tf_strides[0] != 1:
            raise NotImplementedError('Strides on batch axis (N) must be 1.')
        if tf_strides[3] != 1:
            raise NotImplementedError('Strides on channel axis (C) must be 1.')
        str_h, str_w = tf_strides[1], tf_strides[2]

        # padding params
        padding = tf_node.attr['padding'].s.decode("ascii")
        pad_t, pad_b, pad_l, pad_r = tf_conv2d_pool_padding(
            image.axes.lengths, weight.axes.lengths, tf_strides, padding)
        if pad_t != pad_b or pad_l != pad_r:
            raise NotImplementedError("Requires symmetric padding in ngraph:"
                                      "pad_t(%s) == pad_b(%s) and"
                                      "pad_l(%s) == pad_r(%s)" %
                                      (pad_t, pad_b, pad_l, pad_r))

        # conv params
        params = dict(pad_d=0,
                      pad_h=pad_t,
                      pad_w=pad_l,
                      str_d=1,
                      str_h=str_h,
                      str_w=str_w)

        # i, f, o axes
        ax_i = ng.make_axes([ax_C, ax_D, ax_H, ax_W, ax_N])
        ax_f = ng.make_axes([ax_C, ax_T, ax_R, ax_S, ax_K])
        ax_o = ng.make_axes([
            ng.make_axis(ax_K.length, name='C', roles=[ar.Channel]),
            spatial_axis(ax_i, ax_f, params['pad_d'], params['str_d'],
                         ar.Depth),
            spatial_axis(ax_i, ax_f, params['pad_h'], params['str_h'],
                         ar.Height),
            spatial_axis(ax_i, ax_f, params['pad_w'], params['str_w'],
                         ar.Width), ax_N
        ])

        # broadcast input / filter axes
        image = ng.cast_axes(image, ng.make_axes([ax_N, ax_H, ax_W, ax_C]))
        image = ng.expand_dims(image, ax_D, 1)  # NHWC -> NDHWC
        image = ng.axes_with_order(image, axes=ax_i)  # NDHWC -> CDHWN
        weight = ng.cast_axes(weight, ng.make_axes([ax_R, ax_S, ax_C, ax_K]))
        weight = ng.expand_dims(weight, ax_T, 0)  # RSCK -> TRSCK
        weight = ng.axes_with_order(weight, axes=ax_f)  # TRSCK -> CTRSK

        # convolution
        output = ng.convolution(params, image, weight, axes=ax_o)

        # cast back to NHWC
        oC, oD, oH, oW, oN = output.axes
        output = ng.broadcast(output, ng.make_axes([oN, oD, oH, oW, oC]))

        # slice away the oD
        out_slicing = [slice(None), 0, slice(None), slice(None), slice(None)]
        output = ng.Slice(output, out_slicing)

        return output
Esempio n. 3
0
    def MaxPool(self, tf_node, inputs):
        """
        Performs the max pooling on the input.

        Arguments:
            tf_node: NodeDef object, the tensorflow node tso convert.
            inputs: List of ngraph Ops as inputs to this node.

        Returns:
            A ngraph Op corresponding to the tensorflow node.

        Inputs to tf_node:
            input

        TODO: assume default tensorflow layout NHWC, RSCK,
              need to support NCHW as well
              need to clean up / merge with conv2d

        Notes on output shape:
            https://www.tensorflow.org/api_docs/python/nn.html#convolution
        """
        image = inputs[0]

        # TODO: currently NHWC only
        assert tf_node.attr['data_format'].s.decode("ascii") == "NHWC"

        # set axes shape
        ax_N = ng.make_axis(batch=True)
        ax_C = ng.make_axis(roles=[ar.Channel])
        ax_D = ng.make_axis(roles=[ar.Depth])
        ax_H = ng.make_axis(roles=[ar.Height])
        ax_W = ng.make_axis(roles=[ar.Width])
        ng.make_axes([ax_N, ax_H, ax_W, ax_C]).set_shape(image.axes.lengths)
        ax_D.length = 1

        # ksize params
        tf_ksize = [int(s) for s in list(tf_node.attr['ksize'].list.i)]
        if len(tf_ksize) != 4:
            raise ValueError("Length of ksize my be 4.")
        if tf_ksize[0] != 1:
            raise NotImplementedError('Ksize on batch axis (N) must be 1.')
        if tf_ksize[3] != 1:
            raise NotImplementedError('Ksize on channel axis (C) must be 1.'
                                      'Cross map pooling to be implemented.')
        R, S = tf_ksize[1:3]
        T = J = 1

        # strides params
        tf_strides = [int(s) for s in list(tf_node.attr['strides'].list.i)]
        if len(tf_strides) != 4:
            raise ValueError("Length of strides my be 4.")
        if tf_strides[0] != 1:
            raise NotImplementedError('Strides on batch axis (N) must be 1.')
        if tf_strides[3] != 1:
            raise NotImplementedError('Strides on channel axis (C) must be 1.')
        str_h, str_w = tf_strides[1], tf_strides[2]

        # padding params
        padding = tf_node.attr['padding'].s.decode("ascii")
        pad_t, pad_b, pad_l, pad_r = tf_conv2d_pool_padding(
            image.axes.lengths, (R, S, ax_C.length, ax_C.length), tf_strides,
            padding)
        if pad_t != pad_b or pad_l != pad_r:
            raise NotImplementedError("Requires symmetric padding in ngraph:"
                                      "pad_t(%s) == pad_b(%s) and"
                                      "pad_l(%s) == pad_r(%s)" %
                                      (pad_t, pad_b, pad_l, pad_r))

        # pooling params
        params = dict(op='max',
                      pad_d=0,
                      pad_h=pad_t,
                      pad_w=pad_l,
                      pad_c=0,
                      str_d=1,
                      str_h=str_h,
                      str_w=str_w,
                      str_c=1,
                      J=J,
                      T=T,
                      R=R,
                      S=S)

        # i, f, o axes
        ax_i = ng.make_axes([ax_C, ax_D, ax_H, ax_W, ax_N])
        ax_o = ng.make_axes([
            spatial_axis(ax_i, J, params['pad_c'], params['str_c'],
                         ar.Channel),
            spatial_axis(ax_i, T, params['pad_d'], params['str_d'], ar.Depth),
            spatial_axis(ax_i, R, params['pad_h'], params['str_h'], ar.Height),
            spatial_axis(ax_i, S, params['pad_w'], params['str_w'], ar.Width),
            ax_N
        ])

        # broadcast input / filter axes
        image = ng.cast_axes(image, ng.make_axes([ax_N, ax_H, ax_W, ax_C]))
        image = ng.expand_dims(image, ax_D, 1)  # NHWC -> NDHWC
        image = ng.axes_with_order(image, axes=ax_i)  # NDHWC -> CDHWN

        # pooling
        output = ng.pooling(params, image, axes=ax_o)

        # cast back to NHWC
        oC, oD, oH, oW, oN = output.axes
        output = ng.broadcast(output, ng.make_axes([oN, oD, oH, oW, oC]))

        # slice away the oD
        out_slicing = [slice(None), 0, slice(None), slice(None), slice(None)]
        output = ng.Slice(output, out_slicing)

        return output
Esempio n. 4
0
def test_pooling():
    """
    test pooling forward and backward path
    """
    N = 128
    C = 3
    D = 1
    H = W = 32

    J = T = 1
    R = S = 2
    ngt.make_transformer()

    padding = dict(pad_d=0, pad_h=0, pad_w=0, pad_c=0)
    strides = dict(str_d=1, str_h=1, str_w=1, str_c=1)
    fshape = dict(J=J, T=T, R=R, S=S)

    pool_params = dict(op='max')
    pool_params.update(padding)
    pool_params.update(strides)
    pool_params.update(fshape)

    ax_i = ng.make_axes([ax.C, ax.D, ax.H, ax.W, ax.N])
    ax_i.set_shape((C, D, H, W, N))
    inputs = ng.placeholder(axes=ax_i)

    ax_o = ng.make_axes([
        spatial_axis(ax_i, J, padding['pad_c'], strides['str_c'], role=ar.Channel),
        spatial_axis(ax_i, T, padding['pad_d'], strides['str_d'], role=ar.Depth),
        spatial_axis(ax_i, R, padding['pad_h'], strides['str_h'], role=ar.Height),
        spatial_axis(ax_i, S, padding['pad_w'], strides['str_w'], role=ar.Width),
        ax.N
    ])

    # randomly initialize
    input_value = rng.uniform(-1, 1, ax_i)

    assert input_value.shape == ax_i.lengths

    # compute convolution with graph
    output = ng.pooling(pool_params, inputs, axes=ax_o)
    targets = ng.placeholder(axes=ax_o)

    costs = ng.cross_entropy_binary(ng.sigmoid(output), targets)
    error = ng.sum(costs, out_axes=()) / ng.batch_size(costs)
    d_inputs = ng.deriv(error, inputs)

    targets_value = rng.uniform(.1, 0.9, output.axes)

    conv_executor = executor([output, error, d_inputs], inputs, targets)
    result_ng, err_ng, gradI_ng = conv_executor(input_value, targets_value)

    # Now compute reference values via NEON
    NervanaObject.be.bsz = N
    neon_layer = Pooling(fshape=fshape, padding=padding, strides=strides, op="max")

    inp = neon_layer.be.array(input_value.reshape(C * H * W * D, N))
    neon_layer.configure((C, H, W))
    neon_layer.prev_layer = True
    neon_layer.allocate()
    neon_layer.set_deltas(DummyDeltaBuffers())

    result_ne = neon_layer.fprop(inp).get().reshape(output.axes.lengths)

    act_result_ne = 1. / (1.0 + np.exp(-result_ne))
    err = neon_layer.be.array((act_result_ne - targets_value).reshape(-1, N) / float(N))
    gradI_ne = neon_layer.bprop(err).get().reshape(ax_i.lengths)

    # Compare fprop
    np.testing.assert_allclose(result_ng, result_ne, rtol=0, atol=1e-6)

    # Compare bprop
    np.testing.assert_allclose(gradI_ng, gradI_ne, rtol=0, atol=1e-6)