Esempio n. 1
0
    def FeedInput(self, request, context):
        logger.info("server: feed_input")
        if request.comp_id not in self.computations:
            message = 'unknown computation id {}'.format(request.comp_id)
            return hetr_pb2.FeedInputReply(status=False, message=message)

        try:
            values = []
            for v in request.values:
                if v.HasField('scalar'):
                    values.append(protobuf_scalar_to_python(v.scalar))
                else:
                    values.append(pb_to_tensor(v.tensor))
            computation = self.computations[request.comp_id]

            if self.transformer.transformer_name == "gpu":
                import pycuda.driver as drv
                if self.transformer.runtime and \
                   not self.transformer.runtime.ctx == drv.Context.get_current():
                    self.transformer.runtime.ctx.push()
                outputs = computation(*values)
                self.transformer.runtime.ctx.pop()
            else:
                outputs = computation(*values)

            self.results[request.comp_id] = outputs

            return hetr_pb2.FeedInputReply(status=True)
        except Exception:
            return hetr_pb2.FeedInputReply(status=False,
                                           message=traceback.format_exc())
 def get_results(self):
     logger.info("client: get results")
     if self.feed_input_response_future is None:
         raise RuntimeError("call feed_input before get_results")
     response = self.feed_input_response_future.result()
     self.feed_input_response_future = None
     if not response.status:
         raise RuntimeError("RPC feed_input request failed: {}".format(
             response.message))
     response = self.RPC.GetResults(
         hetr_pb2.GetResultsRequest(comp_id=self.comp_id), _TIMEOUT_SECONDS)
     if not response.status:
         raise RuntimeError("RPC get_results request failed: {}".format(
             response.message))
     return_list = []
     for r in response.results:
         if r.HasField('scalar'):
             return_list.append(protobuf_scalar_to_python(r.scalar))
         else:
             return_list.append(pb_to_tensor(r.tensor))
     return_dict = {
         op: return_list[mypos]
         for (op, mypos) in iteritems(self.returns)
     }
     return return_dict
Esempio n. 3
0
 def FeedInput(self, request, context):
     if request.comp_id >= len(self.computations):
         return hetr_pb2.FeedInputReply(status=False)
     values = []
     for v in request.values:
         if v.HasField('scalar'):
             values.append(protobuf_scalar_to_python(v.scalar))
         else:
             values.append(pb_to_tensor(v.tensor))
     computation = self.computations[request.comp_id]
     outputs = computation(*values)
     self.results[request.comp_id] = outputs
     return hetr_pb2.FeedInputReply(status=True)
Esempio n. 4
0
 def get_results(self):
     response = self.RPC.GetResults(
         hetr_pb2.GetResultsRequest(comp_id=self.comp_id), _TIMEOUT_SECONDS)
     if not response.status:
         raise RuntimeError("RPC get_results request failed!")
     return_list = []
     for r in response.results:
         if r.HasField('scalar'):
             return_list.append(protobuf_scalar_to_python(r.scalar))
         else:
             return_list.append(pb_to_tensor(r.tensor))
     return_dict = {
         op: return_list[mypos]
         for (op, mypos) in iteritems(self.returns)
     }
     return return_dict
Esempio n. 5
0
def test_scalar_to_protobuf():
    orig_tensor = np.float32(12)
    pb_tensor = ser.tensor_to_protobuf(orig_tensor)
    py_tensor = ser.pb_to_tensor(pb_tensor)
    np.testing.assert_allclose(orig_tensor, py_tensor)
Esempio n. 6
0
def test_tensor_to_protobuf():
    orig_tensor = np.arange(12, dtype=np.float32).reshape(3, 4)
    pb_tensor = ser.tensor_to_protobuf(orig_tensor)
    py_tensor = ser.pb_to_tensor(pb_tensor)
    np.testing.assert_allclose(orig_tensor, py_tensor)