Esempio n. 1
0
def test_fft2D(dim1, dim2, d1, d2, dtype, op, fftw):
    if fftw:
        ift.fft.enable_fftw()
    tol = _get_rtol(dtype)
    a = ift.RGSpace([dim1, dim2], distances=[d1, d2])
    b = ift.RGSpace([dim1, dim2],
                    distances=[1. / (dim1 * d1), 1. / (dim2 * d2)],
                    harmonic=True)

    fft = op(domain=a, target=b)
    inp = ift.Field.from_random(domain=a,
                                random_type='normal',
                                std=7,
                                mean=3,
                                dtype=dtype)
    out = fft.inverse_times(fft.times(inp))
    assert_allclose(inp.local_data, out.local_data, rtol=tol, atol=tol)

    a, b = b, a

    fft = ift.FFTOperator(domain=a, target=b)
    inp = ift.Field.from_random(domain=a,
                                random_type='normal',
                                std=7,
                                mean=3,
                                dtype=dtype)
    out = fft.inverse_times(fft.times(inp))
    assert_allclose(inp.local_data, out.local_data, rtol=tol, atol=tol)
    ift.fft.disable_fftw()
Esempio n. 2
0
def test_fft1D(d, dtype, op, fftw):
    if fftw:
        ift.fft.enable_fftw()
    dim1 = 16
    tol = _get_rtol(dtype)
    a = ift.RGSpace(dim1, distances=d)
    b = ift.RGSpace(dim1, distances=1. / (dim1 * d), harmonic=True)
    np.random.seed(16)

    fft = op(domain=a, target=b)
    inp = ift.Field.from_random(domain=a,
                                random_type='normal',
                                std=7,
                                mean=3,
                                dtype=dtype)
    out = fft.inverse_times(fft.times(inp))
    assert_allclose(inp.local_data, out.local_data, rtol=tol, atol=tol)

    a, b = b, a

    fft = ift.FFTOperator(domain=a, target=b)
    inp = ift.Field.from_random(domain=a,
                                random_type='normal',
                                std=7,
                                mean=3,
                                dtype=dtype)
    out = fft.inverse_times(fft.times(inp))
    assert_allclose(inp.local_data, out.local_data, rtol=tol, atol=tol)
    ift.fft.disable_fftw()
def test_simplification():
    from nifty5.operators.operator import _ConstantOperator
    f1 = ift.Field.full(ift.RGSpace(10), 2.)
    op = ift.FFTOperator(f1.domain)
    _, op2 = op.simplify_for_constant_input(f1)
    assert_equal(isinstance(op2, _ConstantOperator), True)
    assert_allclose(op(f1).local_data, op2(f1).local_data)

    dom = {"a": ift.RGSpace(10)}
    f1 = ift.full(dom, 2.)
    op = ift.FFTOperator(f1.domain["a"]).ducktape("a")
    _, op2 = op.simplify_for_constant_input(f1)
    assert_equal(isinstance(op2, _ConstantOperator), True)
    assert_allclose(op(f1).local_data, op2(f1).local_data)

    dom = {"a": ift.RGSpace(10), "b": ift.RGSpace(5)}
    f1 = ift.full(dom, 2.)
    pdom = {"a": ift.RGSpace(10)}
    f2 = ift.full(pdom, 2.)
    o1 = ift.FFTOperator(f1.domain["a"])
    o2 = ift.FFTOperator(f1.domain["b"])
    op = (o1.ducktape("a").ducktape_left("a") +
          o2.ducktape("b").ducktape_left("b"))
    _, op2 = op.simplify_for_constant_input(f2)
    assert_equal(isinstance(op2._op1, _ConstantOperator), True)
    assert_allclose(op(f1)["a"].local_data, op2(f1)["a"].local_data)
    assert_allclose(op(f1)["b"].local_data, op2(f1)["b"].local_data)
    lin = ift.Linearization.make_var(ift.MultiField.full(op2.domain, 2.), True)
    assert_allclose(op(lin).val["a"].local_data, op2(lin).val["a"].local_data)
    assert_allclose(op(lin).val["b"].local_data, op2(lin).val["b"].local_data)
Esempio n. 4
0
def test_outer():
    x1 = ift.RGSpace((9, ))
    x2 = ift.RGSpace((3, ))
    m1 = ift.Field.full(x1, .5)
    m2 = ift.Field.full(x2, 3.)
    res = m1.outer(m2)
    assert_allclose(res.to_global_data(), np.full((9, 3), 1.5))
Esempio n. 5
0
def test_integrate():
    x1 = ift.RGSpace((9, ), distances=2.)
    x2 = ift.RGSpace((2, 12), distances=(0.3, ))
    m1 = ift.Field.from_global_data(ift.makeDomain(x1), np.arange(9))
    m2 = ift.Field.full(ift.makeDomain((x1, x2)), 0.45)
    res1 = m1.integrate()
    res2 = m2.integrate(spaces=1)
    assert_allclose(res1, 36 * 2)
    assert_allclose(res2.to_global_data(), np.full(9, 2 * 12 * 0.45 * 0.3**2))
Esempio n. 6
0
def test_get_signal_variance():
    space = ift.RGSpace(3)
    hspace = space.get_default_codomain()
    spec1 = lambda x: np.ones_like(x)
    assert_equal(ift.get_signal_variance(spec1, hspace), 3.)

    space = ift.RGSpace(3, distances=1.)
    hspace = space.get_default_codomain()

    def spec2(k):
        t = np.zeros_like(k)
        t[k == 0] = 1.
        return t

    assert_equal(ift.get_signal_variance(spec2, hspace), 1 / 9.)
Esempio n. 7
0
def test_stdfunc():
    s = ift.RGSpace((200, ))
    f = ift.Field.full(s, 27)
    assert_equal(f.local_data, 27)
    assert_equal(f.shape, (200, ))
    assert_equal(f.dtype, np.int)
    fx = ift.full(f.domain, 0)
    assert_equal(f.dtype, fx.dtype)
    assert_equal(f.shape, fx.shape)
    assert_equal(fx.local_data, 0)
    fx = ift.full(f.domain, 1)
    assert_equal(f.dtype, fx.dtype)
    assert_equal(f.shape, fx.shape)
    assert_equal(fx.local_data, 1)
    fx = ift.full(f.domain, 67.)
    assert_equal(f.shape, fx.shape)
    assert_equal(fx.local_data, 67.)
    f = ift.Field.from_random("normal", s)
    f2 = ift.Field.from_random("normal", s)
    assert_equal((f > f2).local_data, f.local_data > f2.local_data)
    assert_equal((f >= f2).local_data, f.local_data >= f2.local_data)
    assert_equal((f < f2).local_data, f.local_data < f2.local_data)
    assert_equal((f <= f2).local_data, f.local_data <= f2.local_data)
    assert_equal((f != f2).local_data, f.local_data != f2.local_data)
    assert_equal((f == f2).local_data, f.local_data == f2.local_data)
    assert_equal((f + f2).local_data, f.local_data + f2.local_data)
    assert_equal((f - f2).local_data, f.local_data - f2.local_data)
    assert_equal((f * f2).local_data, f.local_data * f2.local_data)
    assert_equal((f / f2).local_data, f.local_data / f2.local_data)
    assert_equal((-f).local_data, -(f.local_data))
    assert_equal(abs(f).local_data, abs(f.local_data))
Esempio n. 8
0
def testLinearInterpolator():
    sp = ift.RGSpace((10, 8), distances=(0.1, 3.5))
    pos = np.random.rand(2, 23)
    pos[0, :] *= 0.9
    pos[1, :] *= 7 * 3.5
    op = ift.LinearInterpolator(sp, pos)
    ift.extra.consistency_check(op)
Esempio n. 9
0
def test_dvol():
    hp = ift.RGSpace(10, harmonic=True)
    p = ift.PowerSpace(harmonic_partner=hp)
    v1 = hp.dvol
    v1 = hp.size*v1 if np.isscalar(v1) else np.sum(v1)
    v2 = p.dvol
    v2 = p.size*v2 if np.isscalar(v2) else np.sum(v2)
    assert_allclose(v1, v2)
Esempio n. 10
0
def test_composed_fft(index, dtype, op, fftw):
    if fftw:
        ift.fft.enable_fftw()
    tol = _get_rtol(dtype)
    a = [a1, a2,
         a3] = [ift.RGSpace((32, )),
                ift.RGSpace((4, 4)),
                ift.RGSpace((5, 6))]
    fft = op(domain=a, space=index)

    inp = ift.Field.from_random(domain=(a1, a2, a3),
                                random_type='normal',
                                std=7,
                                mean=3,
                                dtype=dtype)
    out = fft.inverse_times(fft.times(inp))
    assert_allclose(inp.local_data, out.local_data, rtol=tol, atol=tol)
    ift.fft.disable_fftw()
def test_smooth_regular2(sz1, sz2, d1, d2, sigma, tp):
    tol = _get_rtol(tp)
    sp = ift.RGSpace([sz1, sz2], distances=[d1, d2])
    smo = ift.HarmonicSmoothingOperator(sp, sigma=sigma)
    inp = ift.Field.from_random(domain=sp,
                                random_type='normal',
                                std=1,
                                mean=4,
                                dtype=tp)
    out = smo(inp)
    assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)
Esempio n. 12
0
def test_err():
    s1 = ift.RGSpace((10, ))
    s2 = ift.RGSpace((11, ))
    f1 = ift.Field.full(s1, 27)
    with assert_raises(ValueError):
        f2 = ift.Field(ift.DomainTuple.make(s2), f1.val)
    with assert_raises(TypeError):
        f2 = ift.Field.full(s2, "xyz")
    with assert_raises(TypeError):
        if f1:
            pass
    with assert_raises(TypeError):
        f1.full((2, 4, 6))
    with assert_raises(TypeError):
        f2 = ift.Field(None, None)
    with assert_raises(TypeError):
        f2 = ift.Field(s1, None)
    with assert_raises(ValueError):
        f1.imag
    with assert_raises(TypeError):
        f1.vdot(42)
    with assert_raises(ValueError):
        f1.vdot(ift.Field.full(s2, 1.))
    with assert_raises(TypeError):
        ift.full(s1, [2, 3])
    with assert_raises(TypeError):
        ift.Field(s2, [0, 1])
    with assert_raises(TypeError):
        f1.outer([0, 1])
    with assert_raises(ValueError):
        f1.extract(s2)
    with assert_raises(TypeError):
        f1 += f1
    f2 = ift.Field.full(s2, 27)
    with assert_raises(ValueError):
        f1 + f2
Esempio n. 13
0
def test_weight():
    s1 = ift.RGSpace((10, ))
    f = ift.Field.full(s1, 10.)
    f2 = f.weight(1)
    assert_equal(f.weight(1).local_data, f2.local_data)
    assert_equal(f.total_volume(), 1)
    assert_equal(f.total_volume(0), 1)
    assert_equal(f.total_volume((0, )), 1)
    assert_equal(f.scalar_weight(), 0.1)
    assert_equal(f.scalar_weight(0), 0.1)
    assert_equal(f.scalar_weight((0, )), 0.1)
    s1 = ift.GLSpace(10)
    f = ift.Field.full(s1, 10.)
    assert_equal(f.scalar_weight(), None)
    assert_equal(f.scalar_weight(0), None)
    assert_equal(f.scalar_weight((0, )), None)
Esempio n. 14
0
    def __init__(
            self,
            N_bins=1024,
            power_spectrum_beta=lambda q: 1 / (q**4 + 1),
            power_spectrum_f=lambda q: 1 / (q**4 + 1),
            noise_var=0.1,
    ):
        """
        N_bins : int
            number of bins for the sample spaces
        p_spec_beta : function
            power spectrum for beta
        p_spec_f : function
            power spectrum for f
        noise_var : scalar
            the variance of the noise variable
        """
        self.N_bins = N_bins
        self.s_space = nifty5.RGSpace([N_bins], )
        self.h_space = self.s_space.get_default_codomain()
        self.p_space = nifty5.PowerSpace(self.h_space)

        # covariance operator for the beta distribution
        self.power_spectrum_beta = power_spectrum_beta
        B_h = nifty5.create_power_operator(
            self.h_space, power_spectrum=self.power_spectrum_beta)

        fft = nifty5.FFTOperator(self.s_space)
        self.B = nifty5.SandwichOperator.make(fft, B_h)
        self.beta = self.B.draw_sample()

        # numerical values for p(x|beta) = exp(beta(x)) / sum_z exp(beta(z))
        self.p_x_val = np.exp(np.array(self.beta.to_global_data()))
        self.p_x_val = (1 / np.sum(self.p_x_val)) * self.p_x_val

        # get the covariance operator for the f distribution
        self.power_spectrum_f = power_spectrum_f
        F_h = nifty5.create_power_operator(
            self.h_space, power_spectrum=self.power_spectrum_f)
        self.F = nifty5.SandwichOperator.make(fft, F_h)

        # sample the transformation function f
        self.f = self.F.draw_sample()
        self.f_val = np.array(self.f.to_global_data())

        # set the noise variance
        self.noise_var = noise_var
Esempio n. 15
0
def test_trivialities():
    s1 = ift.RGSpace((10, ))
    f1 = ift.Field.full(s1, 27)
    assert_equal(f1.clip(min=29).local_data, 29.)
    assert_equal(f1.clip(max=25).local_data, 25.)
    assert_equal(f1.local_data, f1.real.local_data)
    assert_equal(f1.local_data, (+f1).local_data)
    f1 = ift.Field.full(s1, 27. + 3j)
    assert_equal(f1.one_over().local_data, (1. / f1).local_data)
    assert_equal(f1.real.local_data, 27.)
    assert_equal(f1.imag.local_data, 3.)
    assert_equal(f1.sum(), f1.sum(0))
    assert_equal(f1.conjugate().local_data,
                 ift.Field.full(s1, 27. - 3j).local_data)
    f1 = ift.from_global_data(s1, np.arange(10))
    # assert_equal(f1.min(), 0)
    # assert_equal(f1.max(), 9)
    assert_equal(f1.prod(), 0)
Esempio n. 16
0
def wf_test(signal, noise, signal_boost, npix = 400):
    
    pixel_space = ift.RGSpace([npix, npix]) 
    fourier_space = pixel_space.get_default_codomain()

    signal_field = ift.Field.from_global_data(pixel_space, signal.astype(float))
    
    HT = ift.HartleyOperator(fourier_space, target=pixel_space) 
    power_field = ift.power_analyze(HT.inverse(signal_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True))

    Sh = ift.create_power_operator(fourier_space, power_spectrum=power_field) 
    R = HT
 
    noise_field = ift.Field.from_global_data(pixel_space, noise.astype(float))
    noise_power_field = ift.power_analyze(HT.inverse(noise_field), binbounds=ift.PowerSpace.useful_binbounds(fourier_space, True))

    N = ift.create_power_operator(HT.domain, noise_power_field)
    N_inverse = HT@[email protected]
    
    amplify = len(signal_boost)
    
    s_data = np.zeros((amplify, npix, npix))
    m_data = np.zeros((amplify, npix, npix))
    d_data = np.zeros((amplify, npix, npix))

    for i in np.arange(amplify):
        
        data = noise_field 

        # Wiener filtering the data

        j = (R.adjoint @N_inverse.inverse)(data)
        D_inv = R.adjoint @ N_inverse.inverse @ R + Sh.inverse

        IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3)
        D = ift.InversionEnabler(D_inv, IC, approximation=Sh.inverse).inverse
        m = D(j)

        s_data[i,:,:] = (signal_field * signal_boost[i]).to_global_data()
        m_data[i,:,:] = HT(m).to_global_data()
        d_data[i,:,:] = data.to_global_data()

    return (s_data, m_data, d_data)
Esempio n. 17
0
def test_dvol(shape, distances, harmonic, power):
    r = ift.RGSpace(shape=shape, distances=distances, harmonic=harmonic)
    assert_allclose(r.dvol, np.prod(r.distances)**power)
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

import nifty5 as ift
from itertools import product

# Currently it is not possible to parametrize fixtures. But this will
# hopefully be fixed in the future.
# https://docs.pytest.org/en/latest/proposals/parametrize_with_fixtures.html

SPACES = [
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
]
SEEDS = [4, 78, 23]
PARAMS = product(SEEDS, SPACES)


@pytest.fixture(params=PARAMS)
def field(request):
    np.random.seed(request.param[0])
    S = ift.ScalingOperator(1., request.param[1])
    s = S.draw_sample()
    return ift.MultiField.from_dict({'s1': s})['s1']


def test_gaussian(field):
Esempio n. 19
0
def testLinearInterpolator():
    sp = ift.RGSpace((10, 8), distances=(0.1, 3.5))
    pos = np.random.rand(2, 23)
    pos[0, :] *= 0.9
    pos[1, :] *= 7 * 3.5
    _check_repr(ift.LinearInterpolator(sp, pos))
Esempio n. 20
0
def testZeroPadder(space, factor, dtype, central):
    dom = (ift.RGSpace(10), ift.UnstructuredDomain(13), ift.RGSpace(7, 12),
           ift.HPSpace(4))
    newshape = [int(factor * l) for l in dom[space].shape]
    _check_repr(ift.FieldZeroPadder(dom, newshape, space, central))
Esempio n. 21
0
def testDomainTupleFieldInserter():
    target = ift.DomainTuple.make(
        (ift.UnstructuredDomain([3, 2]), ift.UnstructuredDomain(7),
         ift.RGSpace([4, 22])))
    _check_repr(ift.DomainTupleFieldInserter(target, 1, (5, )))
Esempio n. 22
0
def testContractionOperator(spaces, wgt, dtype):
    dom = (ift.RGSpace(10), ift.RGSpace(13), ift.GLSpace(5), ift.HPSpace(4))
    _check_repr(ift.ContractionOperator(dom, spaces, wgt))
Esempio n. 23
0
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

import nifty5 as ift

from ..common import list2fixture

_h_RG_spaces = [
    ift.RGSpace(7, distances=0.2, harmonic=True),
    ift.RGSpace((12, 46), distances=(.2, .3), harmonic=True)
]
_h_spaces = _h_RG_spaces + [ift.LMSpace(17)]
_p_RG_spaces = [
    ift.RGSpace(19, distances=0.7),
    ift.RGSpace((1, 2, 3, 6), distances=(0.2, 0.25, 0.34, .8))
]
_p_spaces = _p_RG_spaces + [ift.HPSpace(17), ift.GLSpace(8, 13)]
_pow_spaces = [ift.PowerSpace(ift.RGSpace((17, 38), harmonic=True))]

pmp = pytest.mark.parametrize
dtype = list2fixture([np.float64, np.complex128])


def _check_repr(op):
Esempio n. 24
0
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

from numpy.testing import assert_allclose, assert_equal

import nifty5 as ift

from ..common import list2fixture

space1 = list2fixture([
    ift.RGSpace(4),
    ift.PowerSpace(ift.RGSpace((4, 4), harmonic=True)),
    ift.LMSpace(5),
    ift.HPSpace(4),
    ift.GLSpace(4)
])
space2 = space1


def test_times_adjoint_times(space1, space2):
    cspace = (space1, space2)
    diag1 = ift.Field.from_random('normal', domain=space1)
    diag2 = ift.Field.from_random('normal', domain=space2)
    op1 = ift.DiagonalOperator(diag1, cspace, spaces=(0, ))
    op2 = ift.DiagonalOperator(diag2, cspace, spaces=(1, ))
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

import nifty5 as ift
from helpers import (checkerboard_response, generate_gaussian_data,
                     plot_prior_samples_2d, plot_reconstruction_2d)

np.random.seed(42)

position_space = ift.RGSpace(2*(256,))
harmonic_space = position_space.get_default_codomain()
HT = ift.HarmonicTransformOperator(harmonic_space, target=position_space)
power_space = ift.PowerSpace(harmonic_space)

# Set up generative model
A = ift.SLAmplitude(
    **{
        'target': power_space,
        'n_pix': 64,  # 64 spectral bins
        # Smoothness of spectrum
        'a': 10,  # relatively high variance of spectral curvature
        'k0': .2,  # quefrency mode below which cepstrum flattens
        # Power-law part of spectrum
        'sm': -4,  # preferred power-law slope
        'sv': .6,  # low variance of power-law slope
Esempio n. 26
0
def test_k_length_array(shape, distances, expected):
    r = ift.RGSpace(shape=shape, distances=distances, harmonic=True)
    assert_allclose(r.get_k_length_array().to_global_data(), expected)
Esempio n. 27
0
def test_constructor(shape, distances, harmonic, expected):
    x = ift.RGSpace(shape, distances, harmonic)
    for key, value in expected.items():
        assert_equal(getattr(x, key), value)
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

import nifty5 as ift
from helpers import plot_WF, power_plot, generate_mysterious_data

np.random.seed(42)

position_space = ift.RGSpace(256)
harmonic_space = position_space.get_default_codomain()

HT = ift.HarmonicTransformOperator(harmonic_space, target=position_space)

power_space = ift.PowerSpace(harmonic_space)

# Set up an amplitude operator for the field
# We want to set up a model for the amplitude spectrum with some magic numbers
dct = {
    'target': power_space,
    'n_pix': 64,  # 64 spectral bins
    # Spectral smoothness (affects Gaussian process part)
    'a': 10,  # relatively high variance of spectral curvature
    'k0': .2,  # quefrency mode below which cepstrum flattens
    # Power-law part of spectrum:
Esempio n. 29
0
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

from numpy.testing import assert_allclose

import nifty5 as ift

from ..common import list2fixture

s = list2fixture([
    ift.RGSpace(8, distances=12.9),
    ift.RGSpace(59, distances=.24, harmonic=True),
    ift.RGSpace([12, 3])
])


def test_value(s):
    Regrid = ift.RegriddingOperator(s, s.shape)
    f = ift.from_random('normal', Regrid.domain)
    assert_allclose(f.to_global_data(), Regrid(f).to_global_data())
Esempio n. 30
0
def test_property_ret_type(attribute, expected_type):
    x = ift.RGSpace(1)
    assert_(isinstance(getattr(x, attribute), expected_type))