Esempio n. 1
0
def test_anisotropic_sphere_extraction():
    data = np.random.RandomState(42).random_sample((3, 3, 3, 5))
    affine = np.eye(4)
    affine[0, 0] = 2
    affine[2, 2] = 2
    img = nibabel.Nifti1Image(data, affine)
    masker = NiftiSpheresMasker([(2, 1, 2)], radius=1)
    # Test the fit
    masker.fit()
    # Test the transform
    s = masker.transform(img)
    mask = np.zeros((3, 3, 3), dtype=bool)
    mask[1, :, 1] = True
    assert_array_equal(s[:, 0], np.mean(data[mask], axis=0))
    # Now with a mask
    mask_img = np.zeros((3, 2, 3))
    mask_img[1, 0, 1] = 1
    affine_2 = affine.copy()
    affine_2[0, 0] = 4
    mask_img = nibabel.Nifti1Image(mask_img, affine=affine_2)
    masker = NiftiSpheresMasker([(2, 1, 2)], radius=1, mask_img=mask_img)

    masker.fit()
    s = masker.transform(img)
    assert_array_equal(s[:, 0], data[1, 0, 1])
Esempio n. 2
0
def test_seed_extraction():
    data = np.random.RandomState(42).random_sample((3, 3, 3, 5))
    img = nibabel.Nifti1Image(data, np.eye(4))
    masker = NiftiSpheresMasker([(1, 1, 1)])
    # Test the fit
    masker.fit()
    # Test the transform
    s = masker.transform(img)
    assert_array_equal(s[:, 0], data[1, 1, 1])
Esempio n. 3
0
def test_sphere_extraction():
    data = np.random.RandomState(42).random_sample((3, 3, 3, 5))
    img = nibabel.Nifti1Image(data, np.eye(4))
    masker = NiftiSpheresMasker([(1, 1, 1)], radius=1)
    # Test the fit
    masker.fit()
    # Test the transform
    s = masker.transform(img)
    mask = np.zeros((3, 3, 3), dtype=bool)
    mask[:, 1, 1] = True
    mask[1, :, 1] = True
    mask[1, 1, :] = True
    assert_array_equal(s[:, 0], np.mean(data[mask], axis=0))
    # Now with a mask
    mask_img = np.zeros((3, 3, 3))
    mask_img[1, :, :] = 1
    mask_img = nibabel.Nifti1Image(mask_img, np.eye(4))
    masker = NiftiSpheresMasker([(1, 1, 1)], radius=1, mask_img=mask_img)
    masker.fit()
    s = masker.transform(img)
    assert_array_equal(
        s[:, 0], np.mean(data[np.logical_and(mask, get_data(mask_img))],
                         axis=0))
Esempio n. 4
0
def test_nifti_spheres_masker_inverse_transform():
    # Applying the sphere_extraction example from above backwards
    data = np.random.RandomState(42).random_sample((3, 3, 3, 5))
    img = nibabel.Nifti1Image(data, np.eye(4))
    masker = NiftiSpheresMasker([(1, 1, 1)], radius=1)
    # Test the fit
    masker.fit()
    # Transform data
    with pytest.raises(ValueError, match='Please provide mask_img'):
        masker.inverse_transform(data[0, 0, 0, :])

    # Mask describes the extend of the masker's sphere
    mask = np.zeros((3, 3, 3), dtype=bool)
    mask[:, 1, 1] = True
    mask[1, :, 1] = True
    mask[1, 1, :] = True

    # Now with a mask
    mask_img = np.zeros((3, 3, 3))
    mask_img[1, :, :] = 1
    mask_img = nibabel.Nifti1Image(mask_img, np.eye(4))
    masker = NiftiSpheresMasker([(1, 1, 1)], radius=1, mask_img=mask_img)
    masker.fit()
    s = masker.transform(img)
    # Create an array mask
    array_mask = np.logical_and(mask, get_data(mask_img))

    inverse_map = masker.inverse_transform(s)

    # Testing whether mask is applied to inverse transform
    assert_array_equal(
        np.mean(get_data(inverse_map), axis=-1) != 0, array_mask)
    # Test whether values are preserved
    assert_array_equal(get_data(inverse_map)[array_mask].mean(0), s[:, 0])

    # Test whether the mask's shape is applied
    assert_array_equal(inverse_map.shape[:3], mask_img.shape)