Esempio n. 1
0
def test_plot_carpet(testdata_4d):  # noqa:F811
    """Check contents of plot_carpet figure against data in image."""
    img_4d = testdata_4d['img_4d']
    img_4d_long = testdata_4d['img_4d_long']
    mask_img = testdata_4d['img_mask']
    display = plot_carpet(img_4d, mask_img, detrend=False, title='TEST')
    # Next two lines retrieve the numpy array from the plot
    ax = display.axes[0]
    plotted_array = ax.images[0].get_array()
    assert (plotted_array.shape == (np.prod(img_4d.shape[:-1]),
                                    img_4d.shape[-1]))
    # Make sure that the values in the figure match the values in the image
    np.testing.assert_almost_equal(plotted_array.sum(),
                                   img_4d.get_fdata().sum(),
                                   decimal=3)
    # Save execution time and memory
    plt.close(display)

    fig, ax = plt.subplots()
    display = plot_carpet(img_4d_long,
                          mask_img,
                          t_r=None,
                          detrend=True,
                          title='TEST',
                          figure=fig,
                          axes=ax)
    # Next two lines retrieve the numpy array from the plot
    ax = display.axes[0]
    plotted_array = ax.images[0].get_array()
    # Check size
    n_items = (np.prod(img_4d_long.shape[:-1]) *
               np.ceil(img_4d_long.shape[-1] / 4))
    assert plotted_array.size == n_items
    plt.close(display)
Esempio n. 2
0
def test_plot_carpet_with_atlas(testdata_4d):  # noqa:F811
    """Test plot_carpet when using an atlas."""
    img_4d = testdata_4d['img_4d']
    mask_img = testdata_4d['img_atlas']
    atlas_labels = testdata_4d['atlas_labels']

    # Test atlas - labels
    # t_r is set explicitly for this test as well
    display = plot_carpet(img_4d, mask_img, t_r=2, detrend=False, title='TEST')

    # Check the output
    # Two axes: 1 for colorbar and 1 for imshow
    assert len(display.axes) == 2
    # The y-axis label of the imshow should be 'voxels' since atlas labels are
    # unknown
    ax = display.axes[1]
    assert ax.get_ylabel() == 'voxels'

    # Next two lines retrieve the numpy array from the plot
    ax = display.axes[0]
    colorbar = ax.images[0].get_array()
    assert len(np.unique(colorbar)) == len(atlas_labels)

    # Save execution time and memory
    plt.close(display)

    # Test atlas + labels
    fig, ax = plt.subplots()
    display = plot_carpet(
        img_4d,
        mask_img,
        mask_labels=atlas_labels,
        detrend=True,
        title='TEST',
        figure=fig,
        axes=ax,
    )
    # Check the output
    # Two axes: 1 for colorbar and 1 for imshow
    assert len(display.axes) == 2
    ax = display.axes[0]

    # The ytick labels of the colorbar should match the atlas labels
    yticklabels = ax.get_yticklabels()
    yticklabels = [yt.get_text() for yt in yticklabels]
    assert set(yticklabels) == set(atlas_labels.keys())

    # Next two lines retrieve the numpy array from the plot
    ax = display.axes[0]
    colorbar = ax.images[0].get_array()
    assert len(np.unique(colorbar)) == len(atlas_labels)
    plt.close(display)
Esempio n. 3
0
def carpet_plot(optcom_ts,
                denoised_ts,
                hikts,
                lowkts,
                mask,
                io_generator,
                gscontrol=None):
    """Generate a set of carpet plots for the combined and denoised data.

    Parameters
    ----------
    optcom_ts, denoised_ts, hikts, lowkts : (S x T) array_like
        Different types of data to plot.
    mask : (S,) array-like
        Binary mask used to apply to the data.
    io_generator : :obj:`tedana.io.OutputGenerator`
        The output generator for this workflow
    gscontrol : {None, 'mir', 'gsr'} or :obj:`list`, optional
        Additional denoising steps applied in the workflow.
        If any gscontrol methods were applied, then additional carpet plots will be generated for
        pertinent outputs from those steps.
        Default is None.
    """
    mask_img = io.new_nii_like(io_generator.reference_img, mask.astype(int))
    optcom_img = io.new_nii_like(io_generator.reference_img, optcom_ts)
    dn_img = io.new_nii_like(io_generator.reference_img, denoised_ts)
    hik_img = io.new_nii_like(io_generator.reference_img, hikts)
    lowk_img = io.new_nii_like(io_generator.reference_img, lowkts)

    # Carpet plots
    fig, ax = plt.subplots(figsize=(14, 7))
    plotting.plot_carpet(
        optcom_img,
        mask_img,
        figure=fig,
        axes=ax,
        title="Optimally Combined Data",
    )
    fig.tight_layout()
    fig.savefig(
        os.path.join(io_generator.out_dir, "figures", "carpet_optcom.svg"))

    fig, ax = plt.subplots(figsize=(14, 7))
    plotting.plot_carpet(
        dn_img,
        mask_img,
        figure=fig,
        axes=ax,
        title="Denoised Data",
    )
    fig.tight_layout()
    fig.savefig(
        os.path.join(io_generator.out_dir, "figures", "carpet_denoised.svg"))

    fig, ax = plt.subplots(figsize=(14, 7))
    plotting.plot_carpet(
        hik_img,
        mask_img,
        figure=fig,
        axes=ax,
        title="High-Kappa Data",
    )
    fig.tight_layout()
    fig.savefig(
        os.path.join(io_generator.out_dir, "figures", "carpet_accepted.svg"))

    fig, ax = plt.subplots(figsize=(14, 7))
    plotting.plot_carpet(
        lowk_img,
        mask_img,
        figure=fig,
        axes=ax,
        title="Low-Kappa Data",
    )
    fig.tight_layout()
    fig.savefig(
        os.path.join(io_generator.out_dir, "figures", "carpet_rejected.svg"))

    if (gscontrol is not None) and ("gsr" in gscontrol):
        optcom_with_gs_img = io_generator.get_name("has gs combined img")
        fig, ax = plt.subplots(figsize=(14, 7))
        plotting.plot_carpet(
            optcom_with_gs_img,
            mask_img,
            figure=fig,
            axes=ax,
            title="Optimally Combined Data (Pre-GSR)",
        )
        fig.tight_layout()
        fig.savefig(
            os.path.join(io_generator.out_dir, "figures",
                         "carpet_optcom_nogsr.svg"))

    if (gscontrol is not None) and ("mir" in gscontrol):
        mir_denoised_img = io_generator.get_name("mir denoised img")
        fig, ax = plt.subplots(figsize=(14, 7))
        plotting.plot_carpet(
            mir_denoised_img,
            mask_img,
            figure=fig,
            axes=ax,
            title="Denoised Data (Post-MIR)",
        )
        fig.tight_layout()
        fig.savefig(
            os.path.join(io_generator.out_dir, "figures",
                         "carpet_denoised_mir.svg"))

        mir_denoised_img = io_generator.get_name(
            "ICA accepted mir denoised img")
        fig, ax = plt.subplots(figsize=(14, 7))
        plotting.plot_carpet(
            mir_denoised_img,
            mask_img,
            figure=fig,
            axes=ax,
            title="High-Kappa Data (Post-MIR)",
        )
        fig.tight_layout()
        fig.savefig(
            os.path.join(io_generator.out_dir, "figures",
                         "carpet_accepted_mir.svg"))
Esempio n. 4
0
def denoise(img_file, tsv_file, out_path, col_names=False, hp_filter=False, lp_filter=False, out_figure_path=False):
    nii_ext = '.nii.gz'
    FD_thr = [.5]
    sc_range = np.arange(-1, 3)
    constant = 'constant'

    # read in files
    img = load_niimg(img_file)
    # get file info
    img_name = os.path.basename(img.get_filename())
    file_base = img_name[0:img_name.find('.')]
    save_img_file = pjoin(out_path, file_base + \
                          '_NR' + nii_ext)
    data = img.get_data()
    df_orig = pandas.read_csv(tsv_file, '\t', na_values='n/a')
    df = copy.deepcopy(df_orig)
    Ntrs = df.as_matrix().shape[0]
    print('# of TRs: ' + str(Ntrs))
    assert (Ntrs == data.shape[len(data.shape) - 1])

    # select columns to use as nuisance regressors
    if col_names:
        df = df[col_names]
        str_append = '  [SELECTED regressors in CSV]'
    else:
        col_names = df.columns.tolist()
        str_append = '  [ALL regressors in CSV]'

    # fill in missing nuisance values with mean for that variable
    for col in df.columns:
        if sum(df[col].isnull()) > 0:
            print('Filling in ' + str(sum(df[col].isnull())) + ' NaN value for ' + col)
            df[col] = df[col].fillna(np.mean(df[col]))
    print('# of Confound Regressors: ' + str(len(df.columns)) + str_append)

    # implement HP filter in regression
    TR = img.header.get_zooms()[-1]
    frame_times = np.arange(Ntrs) * TR
    if hp_filter:
        hp_filter = float(hp_filter)
        assert (hp_filter > 0)
        period_cutoff = 1. / hp_filter
        df = make_first_level_design_matrix(frame_times, period_cut=period_cutoff, add_regs=df.as_matrix(),
                                add_reg_names=df.columns.tolist())
        # fn adds intercept into dm

        hp_cols = [col for col in df.columns if 'drift' in col]
        print('# of High-pass Filter Regressors: ' + str(len(hp_cols)))
    else:
        # add in intercept column into data frame
        df[constant] = 1
        print('No High-pass Filter Applied')

    dm = df.as_matrix()

    # prep data
    data = np.reshape(data, (-1, Ntrs))
    data_mean = np.mean(data, axis=1)
    Nvox = len(data_mean)

    # setup and run regression
    model = regression.OLSModel(dm)
    results = model.fit(data.T)
    if not hp_filter:
        results_orig_resid = copy.deepcopy(results.resid)  # save for rsquared computation

    # apply low-pass filter
    if lp_filter:
        # input to butterworth fn is time x voxels
        low_pass = float(lp_filter)
        Fs = 1. / TR
        if low_pass >= Fs / 2:
            raise ValueError('Low pass filter cutoff if too close to the Nyquist frequency (%s)' % (Fs / 2))

        temp_img_file = pjoin(out_path, file_base + \
                              '_temp' + nii_ext)
        temp_img = nb.Nifti1Image(np.reshape(results.resid.T + np.reshape(data_mean, (Nvox, 1)), img.shape).astype('float32'),
                                  img.affine, header=img.header)
        temp_img.to_filename(temp_img_file)
        results.resid = butterworth(results.resid, sampling_rate=Fs, low_pass=low_pass, high_pass=None)
        print('Low-pass Filter Applied: < ' + str(low_pass) + ' Hz')

    # add mean back into data
    clean_data = results.resid.T + np.reshape(data_mean, (Nvox, 1))  # add mean back into residuals

    # save out new data file
    print('Saving output file...')
    clean_data = np.reshape(clean_data, img.shape).astype('float32')
    new_img = nb.Nifti1Image(clean_data, img.affine, header=img.header)
    new_img.to_filename(save_img_file)

    ######### generate Rsquared map for confounds only
    if hp_filter:
        # first remove low-frequency information from data
        hp_cols.append(constant)
        model_first = regression.OLSModel(df[hp_cols].as_matrix())
        results_first = model_first.fit(data.T)
        results_first_resid = copy.deepcopy(results_first.resid)
        del results_first, model_first

        # compute sst - borrowed from matlab
        sst = np.square(np.linalg.norm(results_first_resid -
                                       np.mean(results_first_resid, axis=0), axis=0))

        # now regress out 'true' confounds to estimate their Rsquared
        nr_cols = [col for col in df.columns if 'drift' not in col]
        model_second = regression.OLSModel(df[nr_cols].as_matrix())
        results_second = model_second.fit(results_first_resid)

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_second.resid, axis=0))

        del results_second, model_second, results_first_resid

    elif not hp_filter:
        # compute sst - borrowed from matlab
        sst = np.square(np.linalg.norm(data.T -
                                       np.mean(data.T, axis=0), axis=0))

        # compute sse - borrowed from matlab
        sse = np.square(np.linalg.norm(results_orig_resid, axis=0))

        del results_orig_resid

    # compute rsquared of nuisance regressors
    zero_idx = scipy.logical_and(sst == 0, sse == 0)
    sse[zero_idx] = 1
    sst[zero_idx] = 1  # would be NaNs - become rsquared = 0
    rsquare = 1 - np.true_divide(sse, sst)
    rsquare[np.isnan(rsquare)] = 0

    ######### Visualizing DM & outputs
    fontsize = 12
    fontsize_title = 14
    def_img_size = 8

    if not out_figure_path:
        out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures'

    if not os.path.isdir(out_figure_path):
        os.mkdir(out_figure_path)
    png_append = '_' + img_name[0:img_name.find('.')] + '.png'
    print('Output directory: ' + out_figure_path)

    # DM corr matrix
    cm = df[df.columns[0:-1]].corr()
    curr_sz = copy.deepcopy(def_img_size)
    if cm.shape[0] > def_img_size:
        curr_sz = curr_sz + ((cm.shape[0] - curr_sz) * .3)
    mtx_scale = curr_sz * 100

    mask = np.zeros_like(cm, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True

    fig, ax = plt.subplots(figsize=(curr_sz, curr_sz))
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    sns.heatmap(cm, mask=mask, cmap=cmap, center=0, vmax=cm[cm < 1].max().max(), vmin=cm[cm < 1].min().min(),
                square=True, linewidths=.5, cbar_kws={"shrink": .6})
    ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
    ax.set_yticklabels(cm.columns.tolist(), rotation=-30, va='bottom', fontsize=fontsize)
    ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title)
    plt.tight_layout()
    file_corr_matrix = 'Corr_matrix_regressors' + png_append
    fig.savefig(pjoin(out_figure_path, file_corr_matrix))
    plt.close(fig)
    del fig, ax

    # DM of Nuisance Regressors (all)
    tr_label = 'TR (Volume #)'
    fig, ax = plt.subplots(figsize=(curr_sz - 4.1, def_img_size))
    x_scale_html = ((curr_sz - 4.1) / def_img_size) * 890
    reporting.plot_design_matrix(df, ax=ax)
    ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
    ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize)
    ax.set_ylabel(tr_label, fontsize=fontsize)
    plt.tight_layout()
    file_design_matrix = 'Design_matrix' + png_append
    fig.savefig(pjoin(out_figure_path, file_design_matrix))
    plt.close(fig)
    del fig, ax

    # FD timeseries plot
    FD = 'FD'
    poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd']
    fd_idx = [df_orig.columns.__contains__(i) for i in poss_names]
    if np.sum(fd_idx) > 0:
        FD_name = poss_names[fd_idx == True]
        if sum(df_orig[FD_name].isnull()) > 0:
            df_orig[FD_name] = df_orig[FD_name].fillna(np.mean(df_orig[FD_name]))
        y = df_orig[FD_name].as_matrix()
        Nremove = []
        sc_idx = []
        for thr_idx, thr in enumerate(FD_thr):
            idx = y >= thr
            sc_idx.append(copy.deepcopy(idx))
            for iidx in np.where(idx)[0]:
                for buffer in sc_range:
                    curr_idx = iidx + buffer
                    if curr_idx >= 0 and curr_idx <= len(idx):
                        sc_idx[thr_idx][curr_idx] = True
            Nremove.append(np.sum(sc_idx[thr_idx]))

        Nplots = len(FD_thr)
        sns.set(font_scale=1.5)
        sns.set_style('ticks')
        fig, axes = plt.subplots(Nplots, 1, figsize=(def_img_size * 1.5, def_img_size / 2), squeeze=False)
        sns.despine()
        bound = .4
        fd_mean = np.mean(y)
        for curr in np.arange(0, Nplots):
            axes[curr, 0].plot(y)
            axes[curr, 0].plot((-bound, Ntrs + bound), FD_thr[curr] * np.ones((1, 2))[0], '--', color='black')
            axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20)

            if Nremove[curr] > 0:
                info = scipy.ndimage.measurements.label(sc_idx[curr])
                for cluster in np.arange(1, info[1] + 1):
                    temp = np.where(info[0] == cluster)[0]
                    axes[curr, 0].axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')

            axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')')
            axes[curr, 0].set_title(FD + ': ' + str(100 * Nremove[curr] / Ntrs)[0:4]
                                    + '% of scan (' + str(Nremove[curr]) + ' volumes) would be scrubbed (FD thr.= ' +
                                    str(FD_thr[curr]) + ')')
            plt.text(Ntrs + 1, FD_thr[curr] - .01, FD + ' = ' + str(FD_thr[curr]), fontsize=fontsize)
            plt.text(Ntrs, fd_mean - .01, 'avg = ' + str(fd_mean), fontsize=fontsize)
            axes[curr, 0].set_xlim((-bound, Ntrs + 8))

        plt.tight_layout()
        axes[curr, 0].set_xlabel(tr_label)
        file_fd_plot = FD + '_timeseries' + png_append
        fig.savefig(pjoin(out_figure_path, file_fd_plot))
        plt.close(fig)
        del fig, axes
        print(FD + ' timeseries plot saved')

    else:
        print(FD + ' not found: ' + FD + ' timeseries not plotted')
        file_fd_plot = None

    # Carpet and DVARS plots - before & after nuisance regression

    # need to create mask file to input to DVARS function
    mask_file = pjoin(out_figure_path, 'mask_temp.nii.gz')
    nifti_masker = NiftiMasker(mask_strategy='epi', standardize=False)
    nifti_masker.fit(img)
    nifti_masker.mask_img_.to_filename(mask_file)

    # create 2 or 3 carpet plots, depending on if LP filter is also applied
    Ncarpet = 2
    total_sz = int(16)
    carpet_scale = 840
    y_labels = ['Input (voxels)', 'Output \'cleaned\'']
    imgs = [img, new_img]
    img_files = [img_file, save_img_file]
    color = ['red', 'salmon']
    labels = ['input', 'cleaned']
    if lp_filter:
        Ncarpet = 3
        total_sz = int(20)
        carpet_scale = carpet_scale * (9/8)
        y_labels = ['Input', 'Clean Pre-LP', 'Clean LP']
        imgs.insert(1, temp_img)
        img_files.insert(1, temp_img_file)
        color.insert(1, 'firebrick')
        labels.insert(1, 'clean pre-LP')
        labels[-1] = 'clean LP'

    dvars = []
    print('Computing dvars...')
    for in_file in img_files:
        temp = nac.compute_dvars(in_file=in_file, in_mask=mask_file)[1]
        dvars.append(np.hstack((temp.mean(), temp)))
        del temp

    small_sz = 2
    fig = plt.figure(figsize=(def_img_size * 1.5, def_img_size + ((Ncarpet - 2) * 1)))
    row_used = 0
    if np.sum(fd_idx) > 0:  # if FD data is available
        row_used = row_used + small_sz
        ax0 = plt.subplot2grid((total_sz, 1), (0, 0), rowspan=small_sz)
        ax0.plot(y)
        ax0.scatter(np.arange(0, Ntrs), y, s=10)
        curr = 0
        if Nremove[curr] > 0:
            info = scipy.ndimage.measurements.label(sc_idx[curr])
            for cluster in np.arange(1, info[1] + 1):
                temp = np.where(info[0] == cluster)[0]
                ax0.axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')
        ax0.set_ylabel(FD)

        for side in ["top", "right", "bottom"]:
            ax0.spines[side].set_color('none')
            ax0.spines[side].set_visible(False)

        ax0.set_xticks([])
        ax0.set_xlim((-.5, Ntrs - .5))
        ax0.spines["left"].set_position(('outward', 10))

    ax_d = plt.subplot2grid((total_sz, 1), (row_used, 0), rowspan=small_sz)
    for iplot in np.arange(len(dvars)):
        ax_d.plot(dvars[iplot], color=color[iplot], label=labels[iplot])
    ax_d.set_ylabel('DVARS')
    for side in ["top", "right", "bottom"]:
        ax_d.spines[side].set_color('none')
        ax_d.spines[side].set_visible(False)
    ax_d.set_xticks([])
    ax_d.set_xlim((-.5, Ntrs - .5))
    ax_d.spines["left"].set_position(('outward', 10))
    ax_d.legend(fontsize=fontsize - 2)
    row_used = row_used + small_sz

    st = 0
    carpet_each = int((total_sz - row_used) / Ncarpet)
    for idx, img_curr in enumerate(imgs):
        ax_curr = plt.subplot2grid((total_sz, 1), (row_used + st, 0), rowspan=carpet_each)
        fig = plotting.plot_carpet(img_curr, figure=fig, axes=ax_curr)
        ax_curr.set_ylabel(y_labels[idx])
        for side in ["bottom", "left"]:
            ax_curr.spines[side].set_position(('outward', 10))

        if idx < len(imgs)-1:
            ax_curr.spines["bottom"].set_visible(False)
            ax_curr.set_xticklabels('')
            ax_curr.set_xlabel('')
            st = st + carpet_each

    file_carpet_plot = 'Carpet_plots' + png_append
    fig.savefig(pjoin(out_figure_path, file_carpet_plot))
    plt.close()
    del fig, ax0, ax_curr, ax_d, dvars
    os.remove(mask_file)
    print('Carpet/DVARS plots saved')
    if lp_filter:
        os.remove(temp_img_file)
        del temp_img

    # Display T-stat maps for nuisance regressors
    # create mean img
    img_size = (img.shape[0], img.shape[1], img.shape[2])
    mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine)
    mx = []
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            mx.append(np.max(np.absolute([con.t.min(), con.t.max()])))
    mx = .8 * np.max(mx)
    t_png = 'Tstat_'
    file_tstat = []
    for idx, col in enumerate(df.columns):
        if not 'drift' in col and not constant in col:
            con_vector = np.zeros((1, df.shape[1]))
            con_vector[0, idx] = 1
            con = results.Tcontrast(con_vector)
            m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine)

            title_str = col + ' Tstat'
            fig = plotting.plot_stat_map(m_img, mean_img, threshold=3, colorbar=True, display_mode='z', vmax=mx,
                                         title=title_str,
                                         cut_coords=7)
            file_temp = t_png + col + png_append
            fig.savefig(pjoin(out_figure_path, file_temp))
            file_tstat.append({'name': col, 'file': file_temp})
            plt.close()
            del fig, file_temp
            print(title_str + ' map saved')

    # Display R-sq map for nuisance regressors
    m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine)
    title_str = 'Nuisance Rsq'
    mx = .95 * rsquare.max()
    fig = plotting.plot_stat_map(m_img, mean_img, threshold=.2, colorbar=True, display_mode='z', vmax=mx,
                                 title=title_str,
                                 cut_coords=7)
    file_rsq_map = 'Rsquared' + png_append
    fig.savefig(pjoin(out_figure_path, file_rsq_map))
    plt.close()
    del fig
    print(title_str + ' map saved')

    ######### html report
    templateLoader = jinja2.FileSystemLoader(searchpath="/")
    templateEnv = jinja2.Environment(loader=templateLoader)

    templateVars = {"img_file": img_file,
                    "save_img_file": save_img_file,
                    "Ntrs": Ntrs,
                    "tsv_file": tsv_file,
                    "col_names": col_names,
                    "hp_filter": hp_filter,
                    "lp_filter": lp_filter,
                    "file_design_matrix": file_design_matrix,
                    "file_corr_matrix": file_corr_matrix,
                    "file_fd_plot": file_fd_plot,
                    "file_rsq_map": file_rsq_map,
                    "file_tstat": file_tstat,
                    "x_scale": x_scale_html,
                    "mtx_scale": mtx_scale,
                    "file_carpet_plot": file_carpet_plot,
                    "carpet_scale": carpet_scale
                    }

    TEMPLATE_FILE = pjoin(os.getcwd(), "report_template.html")
    template = templateEnv.get_template(TEMPLATE_FILE)

    outputText = template.render(templateVars)

    html_file = pjoin(out_figure_path, img_name[0:img_name.find('.')] + '.html')
    with open(html_file, "w") as f:
        f.write(outputText)

    print('')
    print('HTML report: ' + html_file)
    return new_img
Esempio n. 5
0
###############################################################################
# Deriving a mask
# ---------------
from nilearn import masking

# Build an EPI-based mask because we have no anatomical data
mask_img = masking.compute_epi_mask(adhd_dataset.func[0])

###############################################################################
# Visualizing global patterns over time
# -------------------------------------
import matplotlib.pyplot as plt

from nilearn.plotting import plot_carpet

display = plot_carpet(adhd_dataset.func[0], mask_img)

display.show()

###############################################################################
# Deriving a label-based mask
# ---------------------------
# Create a gray matter/white matter/cerebrospinal fluid mask from
# ICBM152 tissue probability maps.
import nibabel as nib
import numpy as np
from nilearn import image

atlas = datasets.fetch_icbm152_2009()
atlas_img = image.concat_imgs((atlas["gm"], atlas["wm"], atlas["csf"]))
map_labels = {"Gray Matter": 1, "White Matter": 2, "Cerebrospinal Fluid": 3}