Esempio n. 1
0
def spike_detector(fname, Zalph=5., lZalph=3., histeresis=True, hthres=2., verbose=0):
    """
    fname: name of nifti image, time is last dimension
    other: see spikes_from_slice_diff function
    """
 
    img = nib.load(fname)
    arr = img.get_data()
    assert len(arr.shape) == 4 # need a 4d nifti
    assert arr.shape[3] > max(arr.shape[:-1]), \
            print("time dim should be greater than others and shape is:", arr.shape)

    # 
    qc = time_slice_diffs(arr)
    # tsdiffplot.plot_tsdiffs(qc)
    smd2 = qc['slice_mean_diff2']
    spikes = spikes_from_slice_diff(smd2, Zalph=Zalph, lZalph=lZalph, 
                            histeresis=histeresis, hthres=hthres, verbose=verbose)
    final = final_detection(spikes, verbose=verbose)
    times_to_correct = np.where(final.sum(axis=1) > 0)[0]
    slices_to_correct = {}
    for tim in times_to_correct:
        slices_to_correct[tim] = np.where(final[tim,:] > 0)[0]
    
    if verbose:
        print("total number of outliers found:", spikes.sum())
        print("total number of slices to be corrected:", final.sum())
        print("number of time to be corrected:", (final.sum(axis=1) > 0).sum())

    return qc, spikes, (times_to_correct, slices_to_correct)
Esempio n. 2
0
def test_against_matlab_results():
    fimg = load_image(funcfile)
    results = tsd.time_slice_diffs(fimg)
    # struct as record only to avoid deprecation warning
    tsd_results = sio.loadmat(pjoin(TEST_DATA_PATH, 'tsdiff_results.mat'),
                              struct_as_record=True, squeeze_me=True)
    yield assert_array_almost_equal(
        results['volume_means'],
        tsd_results['g'])
    yield assert_array_almost_equal(
        results['volume_mean_diff2'],
        tsd_results['imgdiff'])
    yield assert_array_almost_equal(
        results['slice_mean_diff2'],
        tsd_results['slicediff'])
    # next tests are from saved, reloaded volumes at 16 bit integer
    # precision, so are not exact, but very close, given that the mean
    # of this array is around 3200
    yield assert_array_almost_equal(
        results['diff2_mean_vol'],
        tsd_results['diff2_mean_vol'],
        decimal=1)
    yield assert_array_almost_equal(
        results['slice_diff2_max_vol'],
        tsd_results['slice_diff2_max_vol'],
        decimal=1)
Esempio n. 3
0
def test_time_slice_diffs():
    n_tps = 10
    n_slices = 4
    slice_shape = (2,3)
    slice_size = np.prod(slice_shape)
    vol_shape = slice_shape + (n_slices,)
    vol_size = np.prod(vol_shape)
    ts = np.random.normal(size=vol_shape + (n_tps,)) * 100 + 10
    expected = {}
    expected['volume_means'] = ts.reshape((vol_size, -1)).mean(0)
    # difference over time ^2
    diffs2 = np.diff(ts, axis=-1)**2
    expected['volume_mean_diff2'] = np.mean(
        diffs2.reshape((vol_size, -1)), 0)
    expected['slice_mean_diff2'] = np.zeros((n_tps-1, n_slices))
    for s in range(n_slices):
        v = diffs2[:,:,s,:].reshape((slice_size, -1))
        expected['slice_mean_diff2'][:,s] = np.mean(v, 0)
    expected['diff2_mean_vol'] = np.mean(diffs2, -1)
    max_diff_is = np.argmax(expected['slice_mean_diff2'], 0)
    sdmv = np.empty(vol_shape)
    for si, dti in enumerate(max_diff_is):
        sdmv[:,:,si] = diffs2[:,:,si,dti]
    expected['slice_diff2_max_vol'] = sdmv
    results = tsd.time_slice_diffs(ts)
    for key in expected:
        yield assert_array_almost_equal(results[key], expected[key])
    # tranposes, reset axes, get the same result
    results = tsd.time_slice_diffs(ts.T, 0, 1)
    results['diff2_mean_vol'] = results['diff2_mean_vol'].T
    results['slice_diff2_max_vol'] = results['slice_diff2_max_vol'].T
    for key in expected:
        yield assert_array_almost_equal(results[key], expected[key])
    ts_t = ts.transpose((1, 3, 0, 2))
    results = tsd.time_slice_diffs(ts_t, 1, -1)
    results['diff2_mean_vol'] = results['diff2_mean_vol'].transpose(
        ((1,0,2)))
    results['slice_diff2_max_vol'] = results['slice_diff2_max_vol'].transpose(
        ((1,0,2)))
    for key in expected:
        yield assert_array_almost_equal(results[key], expected[key])
Esempio n. 4
0
def one_detection(sh,sli,tim):
    arr = make_data(sh)
    arr = make_bad_slices(arr, sli, tim)
    qc = time_slice_diffs(arr)
    smd2 = qc['slice_mean_diff2']
    print("\n smd2 ine one detec\n", smd2)
    spikes = fqc.spikes_from_slice_diff(smd2, Zalph=5., lZalph=3.,
                                    histeresis=True, hthres=.2, verbose=1)
    print("\n spikes ine one detec\n", spikes)
    final = fqc.final_detection(spikes, verbose=1)
    print("\n final ine one detec\n", final)
    times_to_correct = np.where(final.sum(axis=1) > 0)[0]
    print("times_to_correct: ",times_to_correct)
    slices_to_correct = {}
    for ti in times_to_correct:
        slices_to_correct[ti] = np.where(final[ti,:] > 0)[0]

    return times_to_correct, slices_to_correct
Esempio n. 5
0
def one_detection(sh, sli, tim):
    arr = make_data(sh)
    arr = make_bad_slices(arr, sli, tim)
    qc = time_slice_diffs(arr)
    smd2 = qc['slice_mean_diff2']
    print("\n smd2 ine one detec\n", smd2)
    spikes = fqc.spikes_from_slice_diff(smd2,
                                        Zalph=5.,
                                        lZalph=3.,
                                        histeresis=True,
                                        hthres=.2,
                                        verbose=1)
    print("\n spikes ine one detec\n", spikes)
    final = fqc.final_detection(spikes, verbose=1)
    print("\n final ine one detec\n", final)
    times_to_correct = np.where(final.sum(axis=1) > 0)[0]
    print("times_to_correct: ", times_to_correct)
    slices_to_correct = {}
    for ti in times_to_correct:
        slices_to_correct[ti] = np.where(final[ti, :] > 0)[0]

    return times_to_correct, slices_to_correct
Esempio n. 6
0
def spike_detector(fname,
                   Zalph=5.,
                   lZalph=3.,
                   histeresis=True,
                   hthres=2.,
                   verbose=0):
    """
    fname: name of nifti image, time is last dimension
    other: see spikes_from_slice_diff function
    """

    img = nib.load(fname)
    arr = img.get_data()
    assert len(arr.shape) == 4  # need a 4d nifti
    assert arr.shape[3] > max(arr.shape[:-1]), \
            print("time dim should be greater than others and shape is:", arr.shape)

    #
    qc = time_slice_diffs(arr)
    # tsdiffplot.plot_tsdiffs(qc)
    smd2 = qc['slice_mean_diff2']
    spikes = spikes_from_slice_diff(smd2,
                                    Zalph=Zalph,
                                    lZalph=lZalph,
                                    histeresis=histeresis,
                                    hthres=hthres,
                                    verbose=verbose)
    final = final_detection(spikes, verbose=verbose)
    times_to_correct = np.where(final.sum(axis=1) > 0)[0]
    slices_to_correct = {}
    for tim in times_to_correct:
        slices_to_correct[tim] = np.where(final[tim, :] > 0)[0]

    if verbose:
        print("total number of outliers found:", spikes.sum())
        print("total number of slices to be corrected:", final.sum())
        print("number of time to be corrected:", (final.sum(axis=1) > 0).sum())

    return qc, spikes, (times_to_correct, slices_to_correct)