Esempio n. 1
0
def test_evidence(verbose=0,k=1):
    """
    Compare the evidence estimated by Chib's method
    with the variational evidence (free energy)
    fixme : this one really takes time
    """
    n=50
    dim=2
    x = nr.randn(n,dim)
    x[:15] += 3
    
    b = VBGMM(k,dim)
    b.guess_priors(x)
    b.initialize(x)
    b.estimate(x)
    vbe = b.evidence(x),
    if verbose:
        print 'vb: ',vbe, 

    niter = 1000
    b = BGMM(k,dim)
    b.guess_priors(x)
    b.initialize(x)
    b.sample(x,100)
    w,cent,prec,pz = b.sample(x, niter=niter, mem=1)
    bplugin =  BGMM(k, dim, cent, prec, w)
    bplugin.guess_priors(x)
    bfchib = bplugin.bayes_factor(x, pz.astype(np.int), 1)
    if verbose:
        print ' chib:', bfchib
    assert(bfchib>vbe)
Esempio n. 2
0
def test_evidence(verbose=0, k=1):
    # Compare the evidence estimated by Chib's method with the
    # variational evidence (free energy) fixme : this one really takes
    # time
    n = 100
    dim = 2
    x = nr.randn(n, dim)
    x[:30] += 3
    show = 0

    b = VBGMM(k, dim)
    b.guess_priors(x)
    b.initialize(x)
    b.estimate(x)
    vbe = (b.evidence(x),)
    if verbose:
        print "vb: ", vbe,

    niter = 1000
    b = BGMM(k, dim)
    b.guess_priors(x)
    b.initialize(x)
    b.sample(x, 100)
    w, cent, prec, pz = b.sample(x, niter=niter, mem=1)
    bplugin = BGMM(k, dim, cent, prec, w)
    bplugin.guess_priors(x)
    bfchib = bplugin.Bfactor(x, pz.astype(np.int), 1)
    if verbose:
        print " chib:", bfchib
    assert bfchib > vbe
Esempio n. 3
0
def test_vbgmm_select(kmax = 6,verbose=0):
    """
    perform the estimation of a gmm
    """
    n=100
    dim=3
    x = nr.randn(n,dim)
    x[:30] += 2
    be = -np.infty
    for  k in range(1,kmax):
        b = VBGMM(k,dim)
        b.guess_priors(x)
        b.initialize(x)
        b.estimate(x)
        ek = b.evidence(x)
        if verbose: print k,ek
        if ek > be:
            be = ek
            bestk = k
    assert(bestk<3)