Esempio n. 1
0
def test_modelgen1():
    tempdir = mkdtemp()
    filename1 = os.path.join(tempdir, "test1.nii")
    filename2 = os.path.join(tempdir, "test2.nii")
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename1)
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename2)
    s = SpecifyModel()
    s.inputs.input_units = "scans"
    set_output_units = lambda: setattr(s.inputs, "output_units", "scans")
    yield assert_raises, TraitError, set_output_units
    s.inputs.functional_runs = [filename1, filename2]
    s.inputs.time_repetition = 6
    s.inputs.high_pass_filter_cutoff = 128.0
    info = [
        Bunch(
            conditions=["cond1"],
            onsets=[[2, 50, 100, 180]],
            durations=[[1]],
            amplitudes=None,
            pmod=None,
            regressors=None,
            regressor_names=None,
            tmod=None,
        ),
        Bunch(
            conditions=["cond1"],
            onsets=[[30, 40, 100, 150]],
            durations=[[1]],
            amplitudes=None,
            pmod=None,
            regressors=None,
            regressor_names=None,
            tmod=None,
        ),
    ]
    s.inputs.subject_info = info
    res = s.run()
    yield assert_equal, len(res.outputs.session_info), 2
    yield assert_equal, len(res.outputs.session_info[0]["regress"]), 0
    yield assert_equal, len(res.outputs.session_info[0]["cond"]), 1
    yield assert_almost_equal, np.array(res.outputs.session_info[0]["cond"][0]["onset"]), np.array([12, 300, 600, 1080])
    info = [
        Bunch(conditions=["cond1"], onsets=[[2]], durations=[[1]]),
        Bunch(conditions=["cond1"], onsets=[[3]], durations=[[1]]),
    ]
    s.inputs.subject_info = deepcopy(info)
    res = s.run()
    yield assert_almost_equal, np.array(res.outputs.session_info[0]["cond"][0]["duration"]), np.array([6.0])
    yield assert_almost_equal, np.array(res.outputs.session_info[1]["cond"][0]["duration"]), np.array([6.0])
    info = [
        Bunch(conditions=["cond1", "cond2"], onsets=[[2, 3], [2]], durations=[[1, 1], [1]]),
        Bunch(conditions=["cond1", "cond2"], onsets=[[2, 3], [2, 4]], durations=[[1, 1], [1, 1]]),
    ]
    s.inputs.subject_info = deepcopy(info)
    s.inputs.input_units = "scans"
    res = s.run()
    yield assert_almost_equal, np.array(res.outputs.session_info[0]["cond"][0]["duration"]), np.array([6.0, 6.0])
    yield assert_almost_equal, np.array(res.outputs.session_info[0]["cond"][1]["duration"]), np.array([6.0])
    yield assert_almost_equal, np.array(res.outputs.session_info[1]["cond"][1]["duration"]), np.array([6.0, 6.0])
    rmtree(tempdir)
Esempio n. 2
0
def test_modelgen1(tmpdir):
    tempdir = str(tmpdir)
    filename1 = os.path.join(tempdir, 'test1.nii')
    filename2 = os.path.join(tempdir, 'test2.nii')
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename1)
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename2)
    s = SpecifyModel()
    s.inputs.input_units = 'scans'
    set_output_units = lambda: setattr(s.inputs, 'output_units', 'scans')
    with pytest.raises(TraitError): set_output_units()
    s.inputs.functional_runs = [filename1, filename2]
    s.inputs.time_repetition = 6
    s.inputs.high_pass_filter_cutoff = 128.
    info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]], durations=[[1]], amplitudes=None,
                  pmod=None, regressors=None, regressor_names=None, tmod=None),
            Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]], durations=[[1]], amplitudes=None,
                  pmod=None, regressors=None, regressor_names=None, tmod=None)]
    s.inputs.subject_info = info
    res = s.run()
    assert len(res.outputs.session_info) == 2
    assert len(res.outputs.session_info[0]['regress']) == 0
    assert len(res.outputs.session_info[0]['cond']) == 1
    npt.assert_almost_equal(np.array(res.outputs.session_info[0]['cond'][0]['onset']), np.array([12, 300, 600, 1080]))
    info = [Bunch(conditions=['cond1'], onsets=[[2]], durations=[[1]]),
            Bunch(conditions=['cond1'], onsets=[[3]], durations=[[1]])]
    s.inputs.subject_info = deepcopy(info)
    res = s.run()
    npt.assert_almost_equal(np.array(res.outputs.session_info[0]['cond'][0]['duration']), np.array([6.]))
    npt.assert_almost_equal(np.array(res.outputs.session_info[1]['cond'][0]['duration']), np.array([6.]))
    info = [Bunch(conditions=['cond1', 'cond2'], onsets=[[2, 3], [2]], durations=[[1, 1], [1]]),
            Bunch(conditions=['cond1', 'cond2'], onsets=[[2, 3], [2, 4]], durations=[[1, 1], [1, 1]])]
    s.inputs.subject_info = deepcopy(info)
    s.inputs.input_units = 'scans'
    res = s.run()
    npt.assert_almost_equal(np.array(res.outputs.session_info[0]['cond'][0]['duration']), np.array([6., 6.]))
    npt.assert_almost_equal(np.array(res.outputs.session_info[0]['cond'][1]['duration']), np.array([6., ]))
    npt.assert_almost_equal(np.array(res.outputs.session_info[1]['cond'][1]['duration']), np.array([6., 6.]))
Esempio n. 3
0
def test_modelgen1():
    tempdir = mkdtemp()
    filename1 = os.path.join(tempdir, 'test1.nii')
    filename2 = os.path.join(tempdir, 'test2.nii')
    Nifti1Image(np.random.rand(10, 10, 10, 200),
                np.eye(4)).to_filename(filename1)
    Nifti1Image(np.random.rand(10, 10, 10, 200),
                np.eye(4)).to_filename(filename2)
    s = SpecifyModel()
    s.inputs.input_units = 'scans'
    set_output_units = lambda: setattr(s.inputs, 'output_units', 'scans')
    yield assert_raises, TraitError, set_output_units
    s.inputs.functional_runs = [filename1, filename2]
    s.inputs.time_repetition = 6
    s.inputs.high_pass_filter_cutoff = 128.
    info = [
        Bunch(conditions=['cond1'],
              onsets=[[2, 50, 100, 180]],
              durations=[[1]],
              amplitudes=None,
              pmod=None,
              regressors=None,
              regressor_names=None,
              tmod=None),
        Bunch(conditions=['cond1'],
              onsets=[[30, 40, 100, 150]],
              durations=[[1]],
              amplitudes=None,
              pmod=None,
              regressors=None,
              regressor_names=None,
              tmod=None)
    ]
    s.inputs.subject_info = info
    res = s.run()
    yield assert_equal, len(res.outputs.session_info), 2
    yield assert_equal, len(res.outputs.session_info[0]['regress']), 0
    yield assert_equal, len(res.outputs.session_info[0]['cond']), 1
    yield assert_almost_equal, np.array(
        res.outputs.session_info[0]['cond'][0]['onset']), np.array(
            [12, 300, 600, 1080])
    rmtree(tempdir)
Esempio n. 4
0
def test_modelgen1():
    tempdir = mkdtemp()
    filename1 = os.path.join(tempdir, 'test1.nii')
    filename2 = os.path.join(tempdir, 'test2.nii')
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename1)
    Nifti1Image(np.random.rand(10, 10, 10, 200), np.eye(4)).to_filename(filename2)
    s = SpecifyModel()
    s.inputs.input_units = 'scans'
    set_output_units = lambda: setattr(s.inputs, 'output_units', 'scans')
    yield assert_raises, TraitError, set_output_units
    s.inputs.functional_runs = [filename1, filename2]
    s.inputs.time_repetition = 6
    s.inputs.high_pass_filter_cutoff = 128.
    info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]], durations=[[1]], amplitudes=None,
                  pmod=None, regressors=None, regressor_names=None, tmod=None),
            Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]], durations=[[1]], amplitudes=None,
                  pmod=None, regressors=None, regressor_names=None, tmod=None)]
    s.inputs.subject_info = info
    res = s.run()
    yield assert_equal, len(res.outputs.session_info), 2
    yield assert_equal, len(res.outputs.session_info[0]['regress']), 0
    yield assert_equal, len(res.outputs.session_info[0]['cond']), 1
    yield assert_almost_equal, np.array(res.outputs.session_info[0]['cond'][0]['onset']), np.array([12, 300, 600, 1080])
    rmtree(tempdir)
Esempio n. 5
0
    def runglmperun(self, subject, trtimeinsec):
        s = SpecifyModel()
        # loop on all runs and models within each run
        modelfiles = subject._modelfiles

        for model in modelfiles:
            # Make directory results to store the results of the model
            results_dir = os.path.join(subject._path, 'model', model[0],
                                       'results', model[1])
            dir_util.mkpath(results_dir)
            os.chdir(results_dir)

            s.inputs.event_files = model[2]
            s.inputs.input_units = 'secs'
            s.inputs.functional_runs = os.path.join(subject._path, 'BOLD',
                                                    model[1],
                                                    'bold_mcf_hp.nii.gz')
            # use nibable to get the tr of from the .nii file
            s.inputs.time_repetition = trtimeinsec
            s.inputs.high_pass_filter_cutoff = 128.
            # find par file that has motion
            motionfiles = glob(
                os.path.join(subject._path, 'BOLD', model[1], "*.par"))
            s.inputs.realignment_parameters = motionfiles
            #info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]],                      durations=[[1]]),                 Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]],                       durations=[[1]])]
            #s.inputs.subject_info = None

            res = s.run()
            res.runtime.cwd
            print ">>>> preparing evs for model " + model[
                1] + "and run " + model[0]
            sessionInfo = res.outputs.session_info

            level1design = Level1Design()
            level1design.inputs.interscan_interval = trtimeinsec
            level1design.inputs.bases = {'dgamma': {'derivs': False}}
            level1design.inputs.session_info = sessionInfo
            level1design.inputs.model_serial_correlations = True
            #TODO: add contrasts to level 1 design so that I have just condition vs rest for each ev
            #TODO: Look into changign this to FILM instead of FEAT - this also has the option of setting output directory
            # http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#Contrasts
            #http://nipy.org/nipype/interfaces/generated/nipype.interfaces.fsl.model.html#filmgls
            resLevel = level1design.run()

            featModel = FEATModel()
            featModel.inputs.fsf_file = resLevel.outputs.fsf_files
            featModel.inputs.ev_files = resLevel.outputs.ev_files
            resFeat = featModel.run()

            print ">>>> creating fsf design files for  " + model[
                1] + "and run " + model[0]
            # TODO: give mask here
            glm = fsl.GLM(in_file=s.inputs.functional_runs[0],
                          design=resFeat.outputs.design_file,
                          output_type='NIFTI')

            print ">>>> running glm for  " + model[1] + "and run " + model[0]
            resGlm = glm.run()

            print ">>>> finished running  glm for  " + model[
                1] + "and run " + model[0]
Esempio n. 6
0
def test_modelgen1(tmpdir):
    filename1 = tmpdir.join("test1.nii").strpath
    filename2 = tmpdir.join("test2.nii").strpath
    Nifti1Image(np.random.rand(10, 10, 10, 200),
                np.eye(4)).to_filename(filename1)
    Nifti1Image(np.random.rand(10, 10, 10, 200),
                np.eye(4)).to_filename(filename2)
    s = SpecifyModel()
    s.inputs.input_units = "scans"
    set_output_units = lambda: setattr(s.inputs, "output_units", "scans")
    with pytest.raises(TraitError):
        set_output_units()
    s.inputs.functional_runs = [filename1, filename2]
    s.inputs.time_repetition = 6
    s.inputs.high_pass_filter_cutoff = 128.0
    info = [
        Bunch(
            conditions=["cond1"],
            onsets=[[2, 50, 100, 180]],
            durations=[[1]],
            amplitudes=None,
            pmod=None,
            regressors=None,
            regressor_names=None,
            tmod=None,
        ),
        Bunch(
            conditions=["cond1"],
            onsets=[[30, 40, 100, 150]],
            durations=[[1]],
            amplitudes=None,
            pmod=None,
            regressors=None,
            regressor_names=None,
            tmod=None,
        ),
    ]
    s.inputs.subject_info = info
    res = s.run()
    assert len(res.outputs.session_info) == 2
    assert len(res.outputs.session_info[0]["regress"]) == 0
    assert len(res.outputs.session_info[0]["cond"]) == 1
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[0]["cond"][0]["onset"]),
        np.array([12, 300, 600, 1080]),
    )
    info = [
        Bunch(conditions=["cond1"], onsets=[[2]], durations=[[1]]),
        Bunch(conditions=["cond1"], onsets=[[3]], durations=[[1]]),
    ]
    s.inputs.subject_info = deepcopy(info)
    res = s.run()
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[0]["cond"][0]["duration"]),
        np.array([6.0]))
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[1]["cond"][0]["duration"]),
        np.array([6.0]))
    info = [
        Bunch(conditions=["cond1", "cond2"],
              onsets=[[2, 3], [2]],
              durations=[[1, 1], [1]]),
        Bunch(
            conditions=["cond1", "cond2"],
            onsets=[[2, 3], [2, 4]],
            durations=[[1, 1], [1, 1]],
        ),
    ]
    s.inputs.subject_info = deepcopy(info)
    s.inputs.input_units = "scans"
    res = s.run()
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[0]["cond"][0]["duration"]),
        np.array([6.0, 6.0]),
    )
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[0]["cond"][1]["duration"]),
        np.array([6.0]))
    npt.assert_almost_equal(
        np.array(res.outputs.session_info[1]["cond"][1]["duration"]),
        np.array([6.0, 6.0]),
    )
Esempio n. 7
0
                                       struct=[['subject_id']],
                                       evs=[['subject_id', 'func_scans']])
datasource.inputs.sort_filelist = False
results = datasource.run()

print results.outputs

cont1 = ['Bundling-Control', 'T', ['Bundling', 'Control'], [1, -1]]

s = SpecifyModel()
s.inputs.input_units = 'secs'
s.inputs.functional_runs = results.outputs.func
s.inputs.time_repetition = 2
s.inputs.high_pass_filter_cutoff = 128.
s.inputs.event_files = results.outputs.evs
model = s.run()

level1design = Level1Design()
level1design.inputs.interscan_interval = 2.5
level1design.inputs.bases = {'dgamma': {'derivs': False}}
level1design.inputs.model_serial_correlations = False
level1design.inputs.session_info = model.outputs.session_info
level1design.inputs.contrasts = [cont1]
l1d = level1design.run()

print l1d.outputs.ev_files
modelgen = FEATModel()
modelgen.inputs.ev_files = l1d.outputs.ev_files
modelgen.inputs.fsf_file = l1d.outputs.fsf_files
model = modelgen.run()