Esempio n. 1
0
def anatomical_preprocessing():
    '''
    Inputs:
        MP2RAGE Skull stripped image using Spectre-2010

    Workflow:
        1. reorient to RPI
        2. create a brain mask

    Returns:
        brain
        brain_mask

    '''
    # define workflow
    flow = Workflow('anat_preprocess')
    inputnode = Node(util.IdentityInterface(
        fields=['anat', 'anat_gm', 'anat_wm', 'anat_csf', 'anat_first']),
                     name='inputnode')
    outputnode = Node(util.IdentityInterface(fields=[
        'brain',
        'brain_gm',
        'brain_wm',
        'brain_csf',
        'brain_first',
        'brain_mask',
    ]),
                      name='outputnode')

    reorient = Node(interface=preprocess.Resample(), name='anat_reorient')
    reorient.inputs.orientation = 'RPI'
    reorient.inputs.outputtype = 'NIFTI'

    erode = Node(interface=fsl.ErodeImage(), name='anat_preproc')

    reorient_gm = reorient.clone('anat_preproc_gm')
    reorient_wm = reorient.clone('anat_preproc_wm')
    reorient_cm = reorient.clone('anat_preproc_csf')
    reorient_first = reorient.clone('anat_preproc_first')

    make_mask = Node(interface=fsl.UnaryMaths(), name='anat_preproc_mask')
    make_mask.inputs.operation = 'bin'

    # connect workflow nodes
    flow.connect(inputnode, 'anat', reorient, 'in_file')
    flow.connect(inputnode, 'anat_gm', reorient_gm, 'in_file')
    flow.connect(inputnode, 'anat_wm', reorient_wm, 'in_file')
    flow.connect(inputnode, 'anat_csf', reorient_cm, 'in_file')
    flow.connect(inputnode, 'anat_first', reorient_first, 'in_file')
    flow.connect(reorient, 'out_file', erode, 'in_file')
    flow.connect(erode, 'out_file', make_mask, 'in_file')
    flow.connect(make_mask, 'out_file', outputnode, 'brain_mask')

    flow.connect(erode, 'out_file', outputnode, 'brain')
    flow.connect(reorient_gm, 'out_file', outputnode, 'brain_gm')
    flow.connect(reorient_wm, 'out_file', outputnode, 'brain_wm')
    flow.connect(reorient_cm, 'out_file', outputnode, 'brain_csf')
    flow.connect(reorient_first, 'out_file', outputnode, 'brain_first')

    return flow
    def __init__(self, name, base_dir=None):

        super(BrainExtractionWorkflow, self).__init__(name, base_dir)

        # Segmentation
        # ============
        seg_node = npe.MapNode(name="Segmentation",
                               iterfield="data",
                               interface=spm.Segment())
        seg_node.inputs.gm_output_type = [False, False, True]
        seg_node.inputs.wm_output_type = [False, False, True]
        seg_node.inputs.csf_output_type = [False, False, True]
        add1_node = npe.MapNode(name="AddGMWM",
                                iterfield=["in_file", "operand_file"],
                                interface=fsl.BinaryMaths())
        add1_node.inputs.operation = 'add'
        add2_node = npe.MapNode(name="AddGMWMCSF",
                                iterfield=["in_file", "operand_file"],
                                interface=fsl.BinaryMaths())
        add2_node.inputs.operation = 'add'
        dil_node = npe.MapNode(name="Dilate",
                               iterfield="in_file",
                               interface=fsl.DilateImage())
        dil_node.inputs.operation = 'mean'
        ero_node = npe.MapNode(name="Erode",
                               iterfield="in_file",
                               interface=fsl.ErodeImage())
        thre_node = npe.MapNode(name="Threshold",
                                iterfield="in_file",
                                interface=fsl.Threshold())
        thre_node.inputs.thresh = 0.5
        fill_node = npe.MapNode(name="Fill",
                                iterfield="in_file",
                                interface=fsl.UnaryMaths())
        fill_node.inputs.operation = 'fillh'
        mask_node = npe.MapNode(name="ApplyMask",
                                iterfield=["in_file", "mask_file"],
                                interface=fsl.ApplyMask())

        mask_node.inputs.output_type = str("NIFTI")

        self.connect([
            (seg_node, add1_node, [('native_gm_image', 'in_file')]),
            (seg_node, add1_node, [('native_wm_image', 'operand_file')]),
            (seg_node, add2_node, [('native_csf_image', 'in_file')]),
            (add1_node, add2_node, [('out_file', 'operand_file')]),
            (add2_node, dil_node, [('out_file', 'in_file')]),
            (dil_node, ero_node, [('out_file', 'in_file')]),
            (ero_node, thre_node, [('out_file', 'in_file')]),
            (thre_node, fill_node, [('out_file', 'in_file')]),
            (fill_node, mask_node, [('out_file', 'mask_file')]),
        ])
Esempio n. 3
0
def extractWhitematter(input_image, wmoutline_image, output_image):
    thresHolder = fsl.MultiImageMaths(input_file=input_image,
                                      out_file=output_image)
    thresHolder.inputs.op_string = '-uthr 41 -thr 41'
    thresHolder.run()

    thresHolder.inputs.input_file = output_image
    thresHolder.inputs.op_string = '-uthr 2 -thr 2'
    thresHolder.run()

    thresHolder.inputs.op_string = '-uthr 255 -thr 251'
    thresHolder.run()

    # Combine and binarize
    combinizer = fsl.BinaryMaths(operation='add',
                                 in_file=output_image,
                                 operand_file=wmoutline_image,
                                 out_file=output_image)
    binarizer = fsl.UnaryMaths(operation='bin',
                               in_file=output_image,
                               out_file=output_image)

    return output_image
def fieldmap_to_phasediff(name=WORKFLOW_NAME, settings=None):
    """Legacy workflow to create a phasediff map from a fieldmap, to be digested by FUGUE"""

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['fieldmap', 'fmap_mask', 'unwarp_direction', 'dwell_time']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap_rads', 'fmap_unmasked']),
        name='outputnode')

    # Convert topup fieldmap to rad/s [ 1 Hz = 6.283 rad/s]
    fmap_scale = pe.Node(fsl.BinaryMaths(operation='mul', operand_value=6.283),
                         name='fmap_scale')

    # Compute a mask from the fieldmap (??)
    fmap_abs = pe.Node(fsl.UnaryMaths(operation='abs', args='-bin'),
                       name='fmap_abs')
    fmap_mul = pe.Node(fsl.BinaryMaths(operation='mul'), name='fmap_mul_mask')

    # Compute an smoothed field without mask
    fugue_unmask = pe.Node(fsl.FUGUE(save_unmasked_fmap=True),
                           name='fmap_unmask')

    workflow.connect([
        (inputnode, fmap_scale, [('fieldmap', 'in_file')]),
        (inputnode, fmap_mul, [('fmap_mask', 'operand_file')]),
        (inputnode, fugue_unmask, [('unwarp_direction', 'unwarp_direction'),
                                   ('dwell_time', 'dwell_time')]),
        (fmap_scale, fmap_abs, [('out_file', 'in_file')]),
        (fmap_abs, fmap_mul, [('out_file', 'in_file')]),
        (fmap_scale, fugue_unmask, [('out_file', 'fmap_in_file')]),
        (fmap_mul, fugue_unmask, [('out_file', 'mask_file')]),
        (fmap_scale, outputnode, [('out_file', 'fmap_rads')]),
        (fugue_unmask, outputnode, [('fmap_out_file', 'fmap_unmasked')])
    ])
    return workflow
prepare = pe.Node(interface=fsl.epi.PrepareFieldmap(),name='prepare')
prepare.inputs.output_type = "NIFTI_GZ"
prepare.inputs.delta_TE = 2.46

# Co-Register EPI and Correct field inhomogeniety distortions
#epireg = pe.Node(interface=fsl.epi.EpiReg(), name='epireg')
#epireg.inputs.echospacing=0.00046
#epireg.inputs.pedir='-y'
#epireg.inputs.output_type='NIFTI_GZ'

# White Matter Segmentation (Make sure to generate edge map)
segment=pe.Node(interface=fsl.FAST(),name='segment')
#fast -o opname_fast anat_ss


wmmapbin = pe.Node(interface=fsl.UnaryMaths(),name='wmmapbin')
#fslmaths opname_fast_pve_2 -thr 0.5 -bin opname_fast_wmseg
# in_file -> out_file
wmmapbin.inputs.args='-thr 0.5 -bin'

wmmapedge = pe.Node(interface=fsl.MultiImageMaths(),name='wmmapbin')
#fslmaths opname_fast_wmseg -edge -bin -mas opname_fast_wmseg opname_fast_wmedge
wmmapedge.inputs.op_string='-edge -bin -mas %s'






# Flirt Pre-Alignment, using skullstripped T1 as reference
#flirt -ref anat_ss -in epi -dof 6 -omat opname_init.mat
Esempio n. 6
0
def create_extract_noT1_pipe(params_template, params={},
                             name="extract_noT1_pipe"):
    """
    Description: Extract T1 brain using AtlasBrex

    Inputs:

        inputnode:
            restore_T1: preprocessed (debiased/denoised) T1 file name

            restore_T1: preprocessed (debiased/denoised)T2 file name

        arguments:
            params_template: dictionary of info about template

            params: dictionary of node sub-parameters (from a json file)

            name: pipeline name (default = "extract_pipe")

    Outputs:

        smooth_mask.out_file:
            Computed mask (after some smoothing)

    """

    # creating pipeline
    extract_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['restore_T1',
                                      "indiv_params"]),
        name='inputnode')

    # N4 intensity normalization with parameters from json
    norm_intensity = NodeParams(ants.N4BiasFieldCorrection(),
                                params=parse_key(params, "norm_intensity"),
                                name='norm_intensity')

    extract_pipe.connect(inputnode, 'restore_T1',
                         norm_intensity, "input_image")

    # atlas_brex
    atlas_brex = NodeParams(AtlasBREX(),
                            params=parse_key(params, "atlas_brex"),
                            name='atlas_brex')

    extract_pipe.connect(norm_intensity, "output_image",
                         atlas_brex, 't1_restored_file')

    atlas_brex.inputs.NMT_file = params_template["template_head"]
    atlas_brex.inputs.NMT_SS_file = params_template["template_brain"]

    extract_pipe.connect(
            inputnode, ("indiv_params", parse_key, "atlas_brex"),
            atlas_brex, 'indiv_params')

    # mask_brex
    mask_brex = pe.Node(fsl.UnaryMaths(), name='mask_brex')
    mask_brex.inputs.operation = 'bin'

    extract_pipe.connect(atlas_brex, 'brain_file', mask_brex, 'in_file')

    # smooth_mask
    smooth_mask = pe.Node(fsl.UnaryMaths(), name='smooth_mask')
    smooth_mask.inputs.operation = "bin"
    smooth_mask.inputs.args = "-s 1 -thr 0.5 -bin"

    extract_pipe.connect(mask_brex, 'out_file', smooth_mask, 'in_file')

    return extract_pipe
Esempio n. 7
0
def register(warped_dir, atlas_image, atlas_image_brain, subject_T1ws_T2ws,
             subject_T2ws, n_jobs):

    input_spec = pe.Node(utility.IdentityInterface(fields=[
        'subject_image_list', 'subject_image', 'atlas_image',
        'atlas_image_brain'
    ]),
                         iterables=[('subject_image_list', subject_T1ws_T2ws),
                                    ('subject_image', subject_T2ws)],
                         synchronize=True,
                         name='input_spec')
    # set input_spec
    input_spec.inputs.subject_image_list = subject_T1ws_T2ws
    input_spec.inputs.subject_image = subject_T2ws
    input_spec.inputs.atlas_image = atlas_image
    input_spec.inputs.atlas_image_brain = atlas_image_brain
    '''
    CC[x, x, 1, 8]: [fixed, moving, weight, radius]cd 
    -t SyN[0.25]: Syn transform with a gradient step of 0.25
    -r Gauss[3, 0]: sigma 0
    -I 30x50x20
    use - Histogram - Matching
    number - of - affine - iterations 10000x10000x10000x10000: 4 level image pyramid with 10000 iterations at each level
    MI - option 32x16000: 32 bins, 16000 samples
    '''

    reg = pe.Node(
        ants.Registration(
            dimension=3,
            output_transform_prefix="output_",
            #interpolation='BSpline',
            transforms=['Affine', 'SyN'],
            transform_parameters=[(2.0, ), (0.25, )],  #default values syn
            shrink_factors=[[8, 4, 2, 1], [4, 2, 1]],
            smoothing_sigmas=[[3, 2, 1, 0], [2, 1, 0]],  #None for Syn?
            sigma_units=['vox'] * 2,
            sampling_percentage=[0.05, None],  #just use default?
            sampling_strategy=['Random', 'None'],
            number_of_iterations=[[10000, 10000, 10000, 10000], [30, 50, 20]],
            metric=['MI', 'CC'],
            metric_weight=[1, 1],
            radius_or_number_of_bins=[(32), (8)],
            #winsorize_lower_quantile=0.05,
            #winsorize_upper_quantile=0.95,
            verbose=True,
            use_histogram_matching=[True, True]),
        name='calc_registration')

    applytransforms = pe.Node(ants.ApplyTransforms(
        dimension=3, interpolation='NearestNeighbor'),
                              name='apply_warpfield')

    #Make warped atlas binary image
    #https://nipype.readthedocs.io/en/latest/interfaces/generated/interfaces.fsl/preprocess.html#bet
    binarize = pe.Node(fsl.UnaryMaths(operation='bin'), name='binarize')

    #apply binary warped atlas as mask to T2w
    #https://nipype.readthedocs.io/en/0.12.0/interfaces/generated/nipype.interfaces.fsl.maths.html#applymask
    applymask = pe.Node(fsl.ApplyMask(), name='apply_mask')

    wf = pe.Workflow(name='wf', base_dir=warped_dir)

    wf.connect([
        (input_spec, reg, [('atlas_image', 'moving_image'),
                           ('subject_image_list', 'fixed_image')
                           ]),  #create warp field to register atlas to subject
        (input_spec, applytransforms, [('atlas_image_brain', 'input_image'),
                                       ('subject_image', 'reference_image')]),
        (reg, applytransforms, [('forward_transforms', 'transforms')]
         )  #apply warpfield to register atlas brain to subject
    ])
    wf.connect(
        applytransforms, 'output_image', binarize,
        'in_file')  #turn warped atlas brain into binary image to use as mask
    wf.connect(binarize, 'out_file', applymask, 'mask_file')
    wf.connect(input_spec, 'subject_image', applymask, 'in_file')

    wf.config['execution']['parameterize_dirs'] = False

    wf.write_graph()
    output = wf.run(plugin='MultiProc', plugin_args={'n_procs': n_jobs})
Esempio n. 8
0
def create_randomise(name='randomise', working_dir=None, crash_dir=None):
    """
    Parameters
    ----------
        
    Returns
    -------
    workflow : nipype.pipeline.engine.Workflow
        Randomise workflow.
        
    Notes
    -----
    
    Workflow Inputs::
    
        
    Workflow Outputs::

    
    References
    ----------
    
    """

    if not working_dir:
        working_dir = os.path.join(os.getcwd(), 'Randomise_work_dir')
    if not crash_dir:
        crash_dir = os.path.join(os.getcwd(), 'Randomise_crash_dir')

    wf = pe.Workflow(name=name)
    wf.base_dir = working_dir
    wf.config['execution'] = {
        'hash_method': 'timestamp',
        'crashdump_dir': os.path.abspath(crash_dir)
    }

    inputspec = pe.Node(util.IdentityInterface(fields=[
        'subjects_list', 'pipeline_output_folder', 'permutations',
        'mask_boolean', 'demean', 'c_thresh'
    ]),
                        name='inputspec')

    outputspec = pe.Node(util.IdentityInterface(fields=[
        'tstat_files', 't_corrected_p_files', 'index_file', 'threshold_file',
        'localmax_txt_file', 'localmax_vol_file', 'max_file', 'mean_file',
        'pval_file', 'size_file'
    ]),
                         name='outputspec')

    #merge = pe.Node(interface=fsl.Merge(), name='fsl_merge')
    #merge.inputs.dimension = 't'
    #merge.inputs.merged_file = "randomise_merged.nii.gz"

    #wf.connect(inputspec, 'subjects', merge, 'in_files')

    #mask = pe.Node(interface=fsl.maths.MathsCommand(), name='fsl_maths')
    #mask.inputs.args = '-abs -Tmin -bin'
    #mask.inputs.out_file = "randomise_mask.nii.gz"
    #wf.connect(inputspec, 'subjects', mask, 'in_file')

    randomise = pe.Node(interface=fsl.Randomise(), name='randomise')
    randomise.inputs.base_name = "randomise"
    randomise.inputs.demean = True
    randomise.inputs.tfce = True
    wf.connect([(inputspec, randomise, [
        ('subjects', 'in_file'),
        ('design_matrix_file', 'design_mat'),
        ('constrast_file', 'tcon'),
        ('permutations', 'num_perm'),
    ])])
    wf.connect(randomise, 'tstat_files', outputspec, 'tstat_files')
    wf.connect(randomise, 't_corrected_p_files', outputspec,
               't_corrected_p_files')
    #------------- issue here arises while using tfce. By not using tfce, you don't get t_corrected_p files. R V in a conundrum? --------------------#

    select_tcorrp_files = pe.Node(Function(input_names=['input_list'],
                                           output_names=['out_file'],
                                           function=select),
                                  name='select_t_corrp')

    wf.connect(randomise, 't_corrected_p_files', select_tcorrp_files,
               'input_list')
    wf.connect(select_tcorrp_files, 'out_file', outputspec,
               'out_tcorr_corrected')

    select_tstat_files = pe.Node(Function(input_names=['input_list'],
                                          output_names=['out_file'],
                                          function=select),
                                 name='select_t_stat')

    wf.connect(randomise, 'tstat_files', select_tstat_files, 'input_list')
    wf.connect(select_tstat_files, 'out_file', outputspec,
               'out_tstat_corrected')

    thresh = pe.Node(interface=fsl.Threshold(), name='fsl_threshold_contrast')
    thresh.inputs.thresh = 0.95
    thresh.inputs.out_file = 'rando_pipe_thresh_tstat.nii.gz'
    wf.connect(select_tstat_files, 'out_file', thresh, 'in_file')
    wf.connect(thresh, 'out_file', outputspec,
               'rando_pipe_thresh_tstat.nii.gz')

    thresh_bin = pe.Node(interface=fsl.UnaryMaths(),
                         name='fsl_threshold_bin_contrast')
    thresh_bin.inputs.operation = 'bin'
    wf.connect(thresh, 'out_file', thresh_bin, 'in_file')
    wf.connect(thresh_bin, 'out_file', outputspec, 'thresh_bin_out')

    apply_mask = pe.Node(interface=fsl.ApplyMask(),
                         name='fsl_applymask_contrast')
    wf.connect(select_tstat_files, 'out_file', apply_mask, 'in_file')
    wf.connect(thresh_bin, 'out_file', apply_mask, 'mask_file')

    cluster = pe.Node(interface=fsl.Cluster(), name='cluster_contrast')
    cluster.inputs.threshold = 0.0001
    cluster.inputs.out_index_file = "index_file"
    cluster.inputs.out_localmax_txt_file = "lmax_contrast.txt"
    cluster.inputs.out_size_file = "cluster_size_contrast"
    cluster.inputs.out_threshold_file = True
    cluster.inputs.out_max_file = True
    cluster.inputs.out_mean_file = True
    cluster.inputs.out_pval_file = True
    cluster.inputs.out_size_file = True

    wf.connect(apply_mask, 'out_file', cluster, 'in_file')

    wf.connect(cluster, 'index_file', outputspec, 'index_file')
    wf.connect(cluster, 'threshold_file', outputspec, 'threshold_file')
    wf.connect(cluster, 'localmax_txt_file', outputspec, 'localmax_txt_file')
    wf.connect(cluster, 'localmax_vol_file', outputspec, 'localmax_vol_file')
    wf.connect(cluster, 'max_file', outputspec, 'max_file')
    wf.connect(cluster, 'mean_file', outputspec, 'meal_file')
    wf.connect(cluster, 'pval_file', outputspec, 'pval_file')
    wf.connect(cluster, 'size_file', outputspec, 'size_file')

    return wf
Esempio n. 9
0
def get_fmri2standard_wf(
        tvols,
        subject_id,
        ACQ_PARAMS="/home/didac/LabScripts/fMRI_preprocess/acparams_hcp.txt"):
    """Estimates transformation from Gradiend Field Distortion-warped BOLD to T1
    
    In general:
        BOLD is field-inhomogeneity corrected and corregistered into standard space (T1).  
        
    To do so, the following steps are carried out:
        1)  Corregister SBref to SEgfmAP (fsl.FLIRT)
        2)  Realign BOLD to corrected SBref (fsl.MCFLIRT)
        3)  Field inhomogeneity correction estimation of SBref from SEfm_AP and SEfm_PA (fsl.TOPUP)
        4)  Apply field inhomogeneity correction to SBref (fsl.ApplyTOPUP)
        5)  Apply field inhomogeneity correction to BOLD (fsl.ApplyTOPUP)
        6)  Transform free-surfer brain mask (brain.mgz) to T1 space (freesurfer.ApplyVolTransform ;mri_vol2vol), 
            then binarized (fsl.UnaryMaths) and the mask is extracted from T1 (fsl.BinaryMaths)
        7)  Corregister BOLD (field-inhomogeneity corrected) to Standard T1 (fsl.Epi2Reg)

    Parameters
    ----------
    tvols: [t_initial, t_final] volumes included in the preprocess
    ACQ_params: Path to txt file containing MRI acquisition parameters; needs to be specified for topup correction
    
    
    Returns
    -------
    Workflow with the transformation
 
    """
    from nipype import Workflow, Node, interfaces
    from nipype.interfaces import fsl, utility, freesurfer

    print("defining workflow...")
    wf = Workflow(name=subject_id, base_dir='')

    #Setting INPUT node...
    print("defines input node...")
    node_input = Node(utility.IdentityInterface(fields=[
        'func_sbref_img', 'func_segfm_ap_img', 'func_segfm_pa_img',
        'func_bold_ap_img', 'T1_img', 'T1_brain_freesurfer_mask'
    ]),
                      name='input_node')

    print(
        "Averages the three repeated Spin-Echo images with same Phase Encoding (AP or PA) for Susceptibility Correction (unwarping)..."
    )
    node_average_SEgfm = Node(fsl.maths.MeanImage(), name='Mean_SEgfm_AP')

    print("Corregister SB-ref to average SEgfm-AP")
    node_coregister_SBref2SEgfm = Node(
        fsl.FLIRT(dof=6  #translation and rotation only
                  ),
        name='Corregister_SBref2SEgfm')

    print("Eliminates first volumes.")
    node_eliminate_first_scans = Node(
        fsl.ExtractROI(
            t_min=tvols[0],  # first included volume
            t_size=tvols[1] -
            tvols[0],  # number of volumes from the first to the last one
        ),
        name="eliminate_first_scans")

    print("Realigns fMRI BOLD volumes to SBref in SEgfm-AP space")
    node_realign_bold = Node(
        fsl.MCFLIRT(
            save_plots=True,  # save transformation matrices
        ),
        name="realign_fmri2SBref")

    print("Concatenates AP and PA SEgfm volumes...")
    # AP AP AP PA PA PA
    node_merge_ap_pa_inputs = Node(
        utility.base.Merge(2  # number of inputs; it concatenates lists
                           ),
        name='Merge_ap_pa_inputs')
    node_merge_SEgfm = Node(
        fsl.Merge(dimension='t'  # ¿? 
                  ),
        name='Merge_SEgfm_AP_PA')

    print(
        "Estimates TopUp inhomogeneity correction from SEfm_AP and SEfm_PA...")
    node_topup_SEgfm = Node(fsl.TOPUP(encoding_file=ACQ_PARAMS, ),
                            name='Topup_SEgfm_estimation')

    print("Applies warp from TOPUP to correct SBref...")
    node_apply_topup_to_SBref = Node(
        fsl.ApplyTOPUP(
            encoding_file=ACQ_PARAMS,
            method='jac',  # jacobian modulation
            interp='spline',  # interpolation method
        ),
        name="apply_topup_to_SBref")

    print("Applies warp from TOPUP to correct realigned BOLD...")
    node_apply_topup = Node(
        fsl.ApplyTOPUP(
            encoding_file=ACQ_PARAMS,
            method='jac',  # jacobian modulation
            interp='spline',  # interpolation method
        ),
        name="apply_topup")

    ## BRAIN MASK

    #Registration to T1. Epireg without fieldmaps combined (see https://www.fmrib.ox.ac.uk/primers/intro_primer/ExBox20/IntroBox20.html)
    #    print ("Eliminates scalp from brain using T1 high res image");
    #    node_mask_T1=Node(fsl.BET(
    #            frac=0.7 # umbral
    #            ),
    #    name="mask_T1");

    print('Transform brain mask T1 from freesurfer space to T1 space')
    node_vol2vol_brain = Node(
        freesurfer.ApplyVolTransform(
            reg_header=True,  # (--regheader)
            transformed_file='brainmask_warped.nii.gz'
            #source_file --mov (INPUT; freesurfer brain.mgz)
            #transformed_file --o (OUTPUT; ...brain.nii.gz)
            #target_file --targ (REFERENCE; ...T1w.nii.gz)
        ),
        name="vol2vol")

    print('Transform brain mask T1 to binary mask')
    node_bin_mask_brain = Node(
        fsl.UnaryMaths(  # fslmaths T1_brain -bin T1_binarized mask
            operation='bin',  # (-bin)
            #in_file (T1_brain)
            #out_file (T1_binarized_mask)
        ),
        name="binarize_mask")

    print('Extract brain mask from T1 using binary mask')
    node_extract_mask = Node(
        fsl.
        BinaryMaths(  # fslmaths T1 -mul T1_binarized_mask T1_extracted_mask
            operation='mul'  # (-mul)
            #in_file (T1)
            #out_file (T1_extracted_mask)
            #operand_file (T1_binarized_mask)
        ),
        name="extract_mask")

    ##
    print("Estimate and appply transformation from SBref to T1")
    node_epireg = Node(
        fsl.EpiReg(
            #t1_head=SUBJECT_FSTRUCT_DIC['anat_T1'],
            out_base='SEgfm2T1'),
        name="epi2reg")
    '''  
    EPI2REG ALREADY APPLIED         
    print ("Apply epi2reg to SBRef..");
    node_apply_epi2reg_SBref= Node(fsl.ApplyXFM(
            ),
    name="node_apply_epi2reg_SBref");
    '''

    print("Estimates inverse transform from epi2reg...")
    # quality control
    node_invert_epi2reg = Node(fsl.ConvertXFM(invert_xfm=True),
                               name="invert_epi2reg")

    print("...")
    node_mask_fMRI = Node(fsl.BET(mask=True, ), name='mask_fMRI')
    #node_fmriMask.overwrite=True
    print("Setting OUTPUT node...")
    node_output = Node(interfaces.utility.IdentityInterface(fields=[
        'SBref2SEgfm_mat',
        'realign_movpar_txt',
        'realign_fmri_img',
        'topup_movpar_txt',
        'topup_field_coef_img',
        'epi2str_mat',
        'epi2str_img',
        'fmri_mask_img',
        'rfmri_unwarped_imgs',
        'sb_ref_unwarped_img',
    ]),
                       name='output_node')

    print("All nodes created; Starts creating connections")

    #Connects nodes
    wf.connect([
        #inputs
        (node_input, node_average_SEgfm, [("func_segfm_ap_img", "in_file")]),
        (node_input, node_coregister_SBref2SEgfm, [("func_sbref_img",
                                                    "in_file")]),
        (node_input, node_eliminate_first_scans, [("func_bold_ap_img",
                                                   "in_file")]),
        (node_input, node_merge_ap_pa_inputs, [("func_segfm_ap_img", "in1"),
                                               ("func_segfm_pa_img", "in2")]),
        (node_merge_ap_pa_inputs, node_merge_SEgfm, [("out", "in_files")]),
        (node_input, node_epireg, [("T1_img", "t1_head")]),
        (node_input, node_vol2vol_brain, [("T1_brain_freesurfer_mask",
                                           "source_file")]),
        (node_input, node_vol2vol_brain, [("T1_img", "target_file")]),
        (node_input, node_extract_mask, [("T1_img", "in_file")]),

        #connections
        (node_eliminate_first_scans, node_realign_bold, [("roi_file",
                                                          "in_file")]),
        (node_average_SEgfm, node_coregister_SBref2SEgfm, [("out_file",
                                                            "reference")]),
        (node_coregister_SBref2SEgfm, node_realign_bold, [("out_file",
                                                           "ref_file")]),

        #T1 brain mask transformations (change space / vol2vol, binarize and extract)
        (node_vol2vol_brain, node_bin_mask_brain, [("transformed_file",
                                                    "in_file")]),
        (node_bin_mask_brain, node_extract_mask, [("out_file", "operand_file")
                                                  ]),

        #(node_realign_bold, node_tsnr, [("out_file", "in_file")]),
        (node_merge_SEgfm, node_topup_SEgfm, [("merged_file", "in_file")]),
        (node_realign_bold, node_apply_topup, [("out_file", "in_files")]),
        (node_topup_SEgfm, node_apply_topup,
         [("out_fieldcoef", "in_topup_fieldcoef"),
          ("out_movpar", "in_topup_movpar")]),
        (node_topup_SEgfm, node_apply_topup_to_SBref,
         [("out_fieldcoef", "in_topup_fieldcoef"),
          ("out_movpar", "in_topup_movpar")]),
        (node_coregister_SBref2SEgfm, node_apply_topup_to_SBref,
         [("out_file", "in_files")]),

        #corregister to T1
        (node_extract_mask, node_epireg, [("out_file", "t1_brain")]),
        (node_apply_topup_to_SBref, node_epireg, [("out_corrected", "epi")]),
        (node_epireg, node_invert_epi2reg, [("epi2str_mat", "in_file")]),
        (node_coregister_SBref2SEgfm, node_mask_fMRI, [("out_file", "in_file")
                                                       ]),

        #yeld relevant data to output node
        (node_coregister_SBref2SEgfm, node_output, [("out_matrix_file",
                                                     "SBref2SEgfm_mat")]),
        (node_realign_bold, node_output, [("par_file", "realign_movpar_txt"),
                                          ("out_file", "realign_fmri_img")]),
        (node_mask_fMRI, node_output, [("mask_file", "fmri_mask_img")]),
        (node_epireg, node_output, [("epi2str_mat", "epi2str_mat")]),
        (node_epireg, node_output, [("out_file", "epi2str_img")]),
        (node_topup_SEgfm, node_output,
         [("out_fieldcoef", "topup_field_coef_img"),
          ("out_corrected", "sb_ref_unwarped_img")]),
        (node_apply_topup, node_output, [("out_corrected",
                                          "rfmri_unwarped_imgs")])
    ])
    print("All connections created")
    return (wf)
Esempio n. 10
0
def prep_randomise_workflow(c,
                            merged_file,
                            mask_file,
                            f_test,
                            mat_file,
                            con_file,
                            grp_file,
                            output_dir,
                            working_dir,
                            log_dir,
                            model_name,
                            fts_file=None):

    import nipype.interfaces.utility as util
    import nipype.interfaces.fsl as fsl
    import nipype.interfaces.io as nio

    wf = pe.Workflow(name='randomise_workflow')
    wf.base_dir = c.work_dir

    randomise = pe.Node(interface=fsl.Randomise(),
                        name='fsl-randomise_{0}'.format(model_name))
    randomise.inputs.base_name = model_name
    randomise.inputs.in_file = merged_file
    randomise.inputs.mask = mask_file
    randomise.inputs.num_perm = c.randomise_permutation
    randomise.inputs.demean = c.randomise_demean
    randomise.inputs.c_thresh = c.randomise_thresh
    randomise.inputs.tfce = c.randomise_tfce

    randomise.inputs.design_mat = mat_file
    randomise.inputs.tcon = con_file

    if fts_file:
        randomise.inputs.fcon = fts_file

    select_tcorrp_files = pe.Node(util.Function(input_names=['input_list'],
                                                output_names=['out_file'],
                                                function=select),
                                  name='select_t_corrp')

    wf.connect(randomise, 't_corrected_p_files', select_tcorrp_files,
               'input_list')

    select_tstat_files = pe.Node(util.Function(input_names=['input_list'],
                                               output_names=['out_file'],
                                               function=select),
                                 name='select_t_stat')

    wf.connect(randomise, 'tstat_files', select_tstat_files, 'input_list')

    thresh = pe.Node(interface=fsl.Threshold(), name='fsl_threshold_contrast')
    thresh.inputs.thresh = 0.95
    thresh.inputs.out_file = 'randomise_pipe_thresh_tstat.nii.gz'
    wf.connect(select_tstat_files, 'out_file', thresh, 'in_file')

    thresh_bin = pe.Node(interface=fsl.UnaryMaths(),
                         name='fsl_threshold_bin_contrast')
    thresh_bin.inputs.operation = 'bin'
    wf.connect(thresh, 'out_file', thresh_bin, 'in_file')

    apply_mask = pe.Node(interface=fsl.ApplyMask(),
                         name='fsl_applymask_contrast')
    wf.connect(select_tstat_files, 'out_file', apply_mask, 'in_file')
    wf.connect(thresh_bin, 'out_file', apply_mask, 'mask_file')

    cluster = pe.Node(interface=fsl.Cluster(), name='cluster_contrast')
    cluster.inputs.threshold = 0.0001
    cluster.inputs.out_index_file = "index_file"
    cluster.inputs.out_localmax_txt_file = "lmax_contrast.txt"
    cluster.inputs.out_size_file = "cluster_size_contrast"
    cluster.inputs.out_threshold_file = True
    cluster.inputs.out_max_file = True
    cluster.inputs.out_mean_file = True
    cluster.inputs.out_pval_file = True
    cluster.inputs.out_size_file = True

    wf.connect(apply_mask, 'out_file', cluster, 'in_file')

    ds = pe.Node(nio.DataSink(), name='fsl-randomise_sink')

    ds.inputs.base_directory = str(output_dir)
    ds.inputs.container = ''

    wf.connect(randomise, 'tstat_files', ds, 'tstat_files')
    wf.connect(randomise, 't_corrected_p_files', ds, 't_corrected_p_files')
    wf.connect(select_tcorrp_files, 'out_file', ds, 'out_tcorr_corrected')
    wf.connect(select_tstat_files, 'out_file', ds, 'out_tstat_corrected')
    wf.connect(thresh, 'out_file', ds, 'randomise_pipe_thresh_tstat.nii.gz')
    wf.connect(thresh_bin, 'out_file', ds, 'thresh_bin_out')
    wf.connect(cluster, 'index_file', ds, 'index_file')
    wf.connect(cluster, 'threshold_file', ds, 'threshold_file')
    wf.connect(cluster, 'localmax_txt_file', ds, 'localmax_txt_file')
    wf.connect(cluster, 'localmax_vol_file', ds, 'localmax_vol_file')
    wf.connect(cluster, 'max_file', ds, 'max_file')
    wf.connect(cluster, 'mean_file', ds, 'meal_file')
    wf.connect(cluster, 'pval_file', ds, 'pval_file')
    wf.connect(cluster, 'size_file', ds, 'size_file')

    wf.run()
Esempio n. 11
0
        (TumorwarpHighRes, LowThreshTumor, [('out_file', 'in_file')]),
        (NormalwarpHighRes, LowThreshNormal, [('out_file', 'in_file')])
    ])

    datasink = pe.Node(interface=nio.DataSink(), name="datasink")
    datasink.inputs.base_directory = parent_dir + '/FDM/Outputs'
    datasink.inputs.substitutions = [
        ('_scan_id_', ''),
        ('_brain_flirt_volreg_masked_allineate_thresh', '_highres'),
        ('_brain_flirt_volreg_flirt_allineate_masked_allineate_thresh',
         '_highres'),
        ('_flirt_allineate_flirt_allineate_masked_allineate_thresh',
         '_highres')
    ]

TumorBin = pe.Node(interface=fsl.UnaryMaths(), name='TumorBin')
TumorBin.inputs.operation = 'bin'

FDM = pe.Workflow(name='FDM')
FDM.base_dir = parent_dir
FDM.connect([
    (Reg, Warp, [('MaskADC.out_file', 'get_Ref.LinADC')]),
    (Reg, Warp, [('MaskADC.out_file', 'ADCwarpHighRes.in_file')]),
    (Reg, Warp, [('MaskREF.out_file', 'REFwarpHighRes.in_file')]),
    (Reg, Warp, [('MaskTumor.out_file', 'TumorwarpHighRes.in_file')]),
    (Reg, Warp, [('MaskNormal.out_file', 'NormalwarpHighRes.in_file')]),
    (Warp, TumorBin, [('LowThreshTumor.out_file', 'in_file')]),
    (Warp, datasink, [('LowThreshREF.out_file', 'Ref.@ref')]),
    (Warp, datasink, [('LowThreshADC.out_file', 'ADC.@adc')]),
    (TumorBin, datasink, [('out_file', 'Tumor.@tumor')]),
    (Warp, datasink, [('LowThreshNormal.out_file', 'Normal.@normal')])
Esempio n. 12
0
def create_correct_bias_pipe(params={}, name="correct_bias_pipe"):
    """
    Description: Correct bias using T1 and T2 images
        Same as bash_regis.T1xT2BiasFieldCorrection

    Params:

        - smooth (see `MathsCommand <https://nipype.readthedocs.io/en/0.12.1/\
        interfaces/generated/nipype.interfaces.fsl.maths.html#mathscommand>`_)
        - norm_smooth (see `MultiMathsCommand <https://nipype.readthedocs.io/\
        en/0.12.1/interfaces/generated/nipype.interfaces.fsl.maths.html\
        #multiimagemaths>`_)
        - smooth_bias (see `IsotropicSmooth <https://nipype.readthedocs.io/en/\
        0.12.1/interfaces/generated/nipype.interfaces.fsl.maths.html#\
        isotropicsmooth>`_)

    Inputs:

        inputnode:

            preproc_T1:
                preprocessed T1 file name

            preproc_T2:
                preprocessed T2 file name

        arguments:

            params:
                dictionary of node sub-parameters (from a json file)

            name:
                pipeline name (default = "correct_bias_pipe")

    Outputs:

        outputnode.debiased_T1:
            T1 after bias correction

        outputnode.debiased_T2:
            T2 after bias correction
    """
    # creating pipeline
    correct_bias_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['preproc_T1', 'preproc_T2']),
        name='inputnode')

    # BinaryMaths
    mult_T1_T2 = pe.Node(fsl.BinaryMaths(), name='mult_T1_T2')
    mult_T1_T2.inputs.operation = "mul"
    mult_T1_T2.inputs.args = "-abs -sqrt"
    mult_T1_T2.inputs.output_datatype = "float"

    correct_bias_pipe.connect(inputnode, 'preproc_T1', mult_T1_T2, 'in_file')
    correct_bias_pipe.connect(inputnode, 'preproc_T2', mult_T1_T2,
                              'operand_file')

    # Mean Brain Val
    meanbrainval = pe.Node(fsl.ImageStats(), name='meanbrainval')
    meanbrainval.inputs.op_string = "-M"

    correct_bias_pipe.connect(mult_T1_T2, 'out_file', meanbrainval, 'in_file')

    # norm_mult
    norm_mult = pe.Node(fsl.BinaryMaths(), name='norm_mult')
    norm_mult.inputs.operation = "div"

    correct_bias_pipe.connect(mult_T1_T2, 'out_file', norm_mult, 'in_file')
    correct_bias_pipe.connect(meanbrainval, 'out_stat', norm_mult,
                              'operand_value')

    # smooth
    smooth = NodeParams(fsl.maths.MathsCommand(),
                        params=parse_key(params, "smooth"),
                        name='smooth')

    correct_bias_pipe.connect(norm_mult, 'out_file', smooth, 'in_file')

    # norm_smooth
    norm_smooth = NodeParams(fsl.MultiImageMaths(),
                             params=parse_key(params, "norm_smooth"),
                             name='norm_smooth')

    correct_bias_pipe.connect(norm_mult, 'out_file', norm_smooth, 'in_file')
    correct_bias_pipe.connect(smooth, 'out_file', norm_smooth, 'operand_files')

    # modulate
    modulate = pe.Node(fsl.BinaryMaths(), name='modulate')
    modulate.inputs.operation = "div"

    correct_bias_pipe.connect(norm_mult, 'out_file', modulate, 'in_file')
    correct_bias_pipe.connect(norm_smooth, 'out_file', modulate,
                              'operand_file')

    # std_modulate
    std_modulate = pe.Node(fsl.ImageStats(), name='std_modulate')
    std_modulate.inputs.op_string = "-S"

    correct_bias_pipe.connect(modulate, 'out_file', std_modulate, 'in_file')

    # mean_modulate
    mean_modulate = pe.Node(fsl.ImageStats(), name='mean_modulate')
    mean_modulate.inputs.op_string = "-M"

    correct_bias_pipe.connect(modulate, 'out_file', mean_modulate, 'in_file')

    # compute_lower_val
    def compute_lower_val(mean_val, std_val):
        return mean_val - (std_val * 0.5)

    # compute_lower
    lower = pe.Node(niu.Function(input_names=['mean_val', 'std_val'],
                                 output_names=['lower_val'],
                                 function=compute_lower_val),
                    name='lower')

    correct_bias_pipe.connect(mean_modulate, 'out_stat', lower, 'mean_val')
    correct_bias_pipe.connect(std_modulate, 'out_stat', lower, 'std_val')

    # thresh_lower
    thresh_lower = pe.Node(fsl.Threshold(), name='thresh_lower')

    correct_bias_pipe.connect(lower, 'lower_val', thresh_lower, 'thresh')
    correct_bias_pipe.connect(modulate, 'out_file', thresh_lower, 'in_file')

    # mod_mask
    mod_mask = pe.Node(fsl.UnaryMaths(), name='mod_mask')
    mod_mask.inputs.operation = "bin"
    mod_mask.inputs.args = "-ero -mul 255"

    correct_bias_pipe.connect(thresh_lower, 'out_file', mod_mask, 'in_file')

    # bias
    bias = pe.Node(fsl.MultiImageMaths(), name='bias')
    bias.inputs.op_string = "-mas %s -dilall"
    bias.inputs.output_datatype = "float"

    correct_bias_pipe.connect(norm_mult, 'out_file', bias, 'in_file')

    correct_bias_pipe.connect(mod_mask, 'out_file', bias, 'operand_files')

    # smooth_bias
    smooth_bias = NodeParams(fsl.IsotropicSmooth(),
                             params=parse_key(params, "smooth_bias"),
                             name='smooth_bias')

    correct_bias_pipe.connect(bias, 'out_file', smooth_bias, 'in_file')

    # debiased_T1
    debiased_T1 = pe.Node(fsl.BinaryMaths(), name='debiased_T1')
    debiased_T1.inputs.operation = "div"
    debiased_T1.inputs.output_datatype = "float"

    correct_bias_pipe.connect(inputnode, 'preproc_T1', debiased_T1, 'in_file')
    correct_bias_pipe.connect(smooth_bias, 'out_file', debiased_T1,
                              'operand_file')

    # debiased_T2
    debiased_T2 = pe.Node(fsl.BinaryMaths(), name='debiased_T2')
    debiased_T2.inputs.operation = "div"
    debiased_T2.inputs.output_datatype = "float"

    correct_bias_pipe.connect(inputnode, 'preproc_T2', debiased_T2, 'in_file')
    correct_bias_pipe.connect(smooth_bias, 'out_file', debiased_T2,
                              'operand_file')

    # outputnode
    outputnode = pe.Node(
        niu.IdentityInterface(fields=["debiased_T1", "debiased_T2"]),
        name='outputnode')

    correct_bias_pipe.connect(debiased_T1, 'out_file', outputnode,
                              'debiased_T1')
    correct_bias_pipe.connect(debiased_T2, 'out_file', outputnode,
                              'debiased_T2')

    return correct_bias_pipe
Esempio n. 13
0
def create_asl_processing_workflow(in_inversion_recovery_file,
                                   in_asl_file,
                                   output_dir,
                                   in_t1_file=None,
                                   name='asl_processing_workflow'):

    workflow = pe.Workflow(name=name)
    workflow.base_output_dir = name

    subject_id = split_filename(os.path.basename(in_asl_file))[1]

    ir_splitter = pe.Node(interface=fsl.Split(
        dimension='t',
        out_base_name='out_',
        in_file=in_inversion_recovery_file),
                          name='ir_splitter')
    ir_selector = pe.Node(interface=niu.Select(index=[0, 2, 4]),
                          name='ir_selector')
    workflow.connect(ir_splitter, 'out_files', ir_selector, 'inlist')
    ir_merger = pe.Node(interface=fsl.Merge(dimension='t'), name='ir_merger')
    workflow.connect(ir_selector, 'out', ir_merger, 'in_files')
    fitqt1 = pe.Node(interface=niftyfit.FitQt1(TIs=[4, 2, 1], SR=True),
                     name='fitqt1')
    workflow.connect(ir_merger, 'merged_file', fitqt1, 'source_file')
    extract_ir_0 = pe.Node(interface=niftyseg.BinaryMathsInteger(
        operation='tp', operand_value=0, in_file=in_inversion_recovery_file),
                           name='extract_ir_0')
    ir_thresolder = pe.Node(interface=fsl.Threshold(thresh=250),
                            name='ir_thresolder')
    workflow.connect(extract_ir_0, 'out_file', ir_thresolder, 'in_file')
    create_mask = pe.Node(interface=fsl.UnaryMaths(operation='bin'),
                          name='create_mask')
    workflow.connect(ir_thresolder, 'out_file', create_mask, 'in_file')

    model_fitting = pe.Node(niftyfit.FitAsl(source_file=in_asl_file,
                                            pcasl=True,
                                            PLD=1800,
                                            LDD=1800,
                                            eff=0.614,
                                            mul=0.1),
                            name='model_fitting')
    workflow.connect(fitqt1, 'm0map', model_fitting, 'm0map')
    workflow.connect(create_mask, 'out_file', model_fitting, 'mask')

    t1_to_asl_registration = pe.Node(niftyreg.RegAladin(rig_only_flag=True),
                                     name='t1_to_asl_registration')
    m0_resampling = pe.Node(niftyreg.RegResample(inter_val='LIN'),
                            name='m0_resampling')
    mc_resampling = pe.Node(niftyreg.RegResample(inter_val='LIN'),
                            name='mc_resampling')
    t1_resampling = pe.Node(niftyreg.RegResample(inter_val='LIN'),
                            name='t1_resampling')
    cbf_resampling = pe.Node(niftyreg.RegResample(inter_val='LIN'),
                             name='cbf_resampling')

    if in_t1_file:
        t1_to_asl_registration.inputs.flo_file = in_asl_file
        t1_to_asl_registration.inputs.ref_file = in_t1_file
        m0_resampling.inputs.ref_file = in_t1_file
        mc_resampling.inputs.ref_file = in_t1_file
        t1_resampling.inputs.ref_file = in_t1_file
        cbf_resampling.inputs.ref_file = in_t1_file
        workflow.connect(fitqt1, 'm0map', m0_resampling, 'flo_file')
        workflow.connect(fitqt1, 'mcmap', mc_resampling, 'flo_file')
        workflow.connect(fitqt1, 't1map', t1_resampling, 'flo_file')
        workflow.connect(model_fitting, 'cbf_file', cbf_resampling, 'flo_file')
        workflow.connect(t1_to_asl_registration, 'aff_file', m0_resampling,
                         'trans_file')
        workflow.connect(t1_to_asl_registration, 'aff_file', mc_resampling,
                         'trans_file')
        workflow.connect(t1_to_asl_registration, 'aff_file', t1_resampling,
                         'trans_file')
        workflow.connect(t1_to_asl_registration, 'aff_file', cbf_resampling,
                         'trans_file')

    maskrenamer = pe.Node(interface=niu.Rename(format_string=subject_id +
                                               '_mask',
                                               keep_ext=True),
                          name='maskrenamer')
    m0renamer = pe.Node(interface=niu.Rename(format_string=subject_id +
                                             '_m0map',
                                             keep_ext=True),
                        name='m0renamer')
    mcrenamer = pe.Node(interface=niu.Rename(format_string=subject_id +
                                             '_mcmap',
                                             keep_ext=True),
                        name='mcrenamer')
    t1renamer = pe.Node(interface=niu.Rename(format_string=subject_id +
                                             '_t1map',
                                             keep_ext=True),
                        name='t1renamer')
    workflow.connect(create_mask, 'out_file', maskrenamer, 'in_file')
    if in_t1_file:
        workflow.connect(m0_resampling, 'out_file', m0renamer, 'in_file')
        workflow.connect(mc_resampling, 'out_file', mcrenamer, 'in_file')
        workflow.connect(t1_resampling, 'out_file', t1renamer, 'in_file')
    else:
        workflow.connect(fitqt1, 'm0map', m0renamer, 'in_file')
        workflow.connect(fitqt1, 'mcmap', mcrenamer, 'in_file')
        workflow.connect(fitqt1, 't1map', t1renamer, 'in_file')

    ds = pe.Node(nio.DataSink(parameterization=False,
                              base_directory=output_dir),
                 name='ds')
    workflow.connect(maskrenamer, 'out_file', ds, '@mask_file')
    workflow.connect(m0renamer, 'out_file', ds, '@m0_file')
    workflow.connect(mcrenamer, 'out_file', ds, '@mc_file')
    workflow.connect(t1renamer, 'out_file', ds, '@t1_file')
    if in_t1_file:
        workflow.connect(cbf_resampling, 'out_file', ds, '@cbf_file')
    else:
        workflow.connect(model_fitting, 'cbf_file', ds, '@cbf_file')
    workflow.connect(model_fitting, 'error_file', ds, '@err_file')

    return workflow
Esempio n. 14
0
def create_segment_atropos_pipe(params={}, name="segment_atropos_pipe"):
    """
    Description: Segmentation with ANTS atropos script

    Inputs:

        inputnode:
            brain_file: T1 image, after extraction and norm bin_norm_intensity

            gm_prior_file: grey matter tissue intensity file

            wm_prior_file: white matter tissue intensity file

            csf_prior_file: csf tissue intensity file

        arguments:
            params: dictionary of node sub-parameters (from a json file)

            name: pipeline name (default = "segment_atropos_pipe")

    Outputs:

        threshold_csf.out_file:
            csf tissue intensity mask in subject space
        threshold_gm.out_file:
            grey matter tissue intensity mask in subject space
        threshold_wm.out_file:
            white matter tissue intensity mask in subject space
    """
    # creating pipeline
    segment_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=["brain_file", "gm_prior_file", "wm_prior_file",
                    "csf_prior_file"]),
        name='inputnode')

    # bin_norm_intensity (a cheat from Kepkee if I understood well!)
    bin_norm_intensity = pe.Node(fsl.UnaryMaths(), name="bin_norm_intensity")
    bin_norm_intensity.inputs.operation = "bin"

    segment_pipe.connect(inputnode, "brain_file",
                         bin_norm_intensity, "in_file")

    # merging priors as a list
    merge_3_elem = pe.Node(niu.Function(
        input_names=['elem1', 'elem2', 'elem3'],
        output_names=['merged_list'],
        function=merge_3_elem_to_list), name='merge_3_elem')

    # was like this before (1 -> csf, 2 -> gm, 3 -> wm, to check)
    segment_pipe.connect(inputnode, 'csf_prior_file', merge_3_elem, "elem1")
    segment_pipe.connect(inputnode, 'gm_prior_file', merge_3_elem, "elem2")
    segment_pipe.connect(inputnode, 'wm_prior_file', merge_3_elem, "elem3")

    # Atropos
    seg_at = NodeParams(AtroposN4(),
                        params=parse_key(params, "Atropos"),
                        name='seg_at')

    segment_pipe.connect(inputnode, "brain_file", seg_at, "brain_file")
    segment_pipe.connect(bin_norm_intensity, 'out_file',
                         seg_at, "brainmask_file")
    segment_pipe.connect(merge_3_elem, 'merged_list',
                         seg_at, "priors")

    # Threshold GM, WM and CSF
    thd_nodes = {}
    for i, tissue in enumerate(['csf', 'gm', 'wm']):
        tmp_node = NodeParams(fsl.Threshold(),
                              params=parse_key(params, "threshold_" + tissue),
                              name="threshold_" + tissue)

        segment_pipe.connect(seg_at, ('segmented_files', get_elem, i),
                             tmp_node, 'in_file')

        thd_nodes[tissue] = tmp_node

    return segment_pipe
Esempio n. 15
0
def create_extract_pipe(params_template, params={}, name="extract_pipe"):
    """
    Description: Extract T1 brain using AtlasBrex

    Params:

    - norm_intensity (see `N4BiasFieldCorrection <https://nipype.readthedocs\
    .io/en/0.12.1/interfaces/generated/nipype.interfaces.ants.segmentation.\
    html#n4biasfieldcorrection>`_ for arguments)
    - atlas_brex (see :class:`AtlasBREX \
    <macapype.nodes.extract_brain.AtlasBREX>` for arguments) - also \
    available as :ref:`indiv_params <indiv_params>`

    Inputs:

        inputnode:

            restore_T1:
                preprocessed (debiased/denoised) T1 file name

            restore_T2:
                preprocessed (debiased/denoised)T2 file name

        arguments:

            params_template:
                dictionary of info about template

            params:
                dictionary of node sub-parameters (from a json file)

            name:
                pipeline name (default = "extract_pipe")

    Outputs:

        smooth_mask.out_file:
            Computed mask (after some smoothing)

    """

    # creating pipeline
    extract_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['restore_T1', 'restore_T2', "indiv_params"]),
                        name='inputnode')

    # atlas_brex
    atlas_brex = NodeParams(AtlasBREX(),
                            params=parse_key(params, "atlas_brex"),
                            name='atlas_brex')

    extract_pipe.connect(inputnode, "restore_T1", atlas_brex,
                         't1_restored_file')

    atlas_brex.inputs.NMT_file = params_template["template_head"]
    atlas_brex.inputs.NMT_SS_file = params_template["template_brain"]

    extract_pipe.connect(inputnode, ("indiv_params", parse_key, "atlas_brex"),
                         atlas_brex, 'indiv_params')

    # mask_brex
    mask_brex = pe.Node(fsl.UnaryMaths(), name='mask_brex')
    mask_brex.inputs.operation = 'bin'

    extract_pipe.connect(atlas_brex, 'brain_file', mask_brex, 'in_file')

    # smooth_mask
    smooth_mask = pe.Node(fsl.UnaryMaths(), name='smooth_mask')
    smooth_mask.inputs.operation = "bin"
    smooth_mask.inputs.args = "-s 1 -thr 0.5 -bin"

    extract_pipe.connect(mask_brex, 'out_file', smooth_mask, 'in_file')

    # mult_T1
    mult_T1 = pe.Node(afni.Calc(), name='mult_T1')
    mult_T1.inputs.expr = "a*b"
    mult_T1.inputs.outputtype = 'NIFTI_GZ'

    extract_pipe.connect(inputnode, "restore_T1", mult_T1, 'in_file_a')
    extract_pipe.connect(smooth_mask, 'out_file', mult_T1, 'in_file_b')

    # mult_T2
    mult_T2 = pe.Node(afni.Calc(), name='mult_T2')
    mult_T2.inputs.expr = "a*b"
    mult_T2.inputs.outputtype = 'NIFTI_GZ'

    extract_pipe.connect(inputnode, 'restore_T2', mult_T2, 'in_file_a')
    extract_pipe.connect(smooth_mask, 'out_file', mult_T2, 'in_file_b')
    return extract_pipe
Esempio n. 16
0
def create_segment_atropos_seg_pipe(params={}, name="segment_atropos_pipe"):
    """
    Description: Segmentation with ANTS atropos script using seg file

    Params:
        - Atropos (see :class:`AtroposN4 <macapype.nodes.segment.AtroposN4>`)
        - threshold_gm, threshold_wm, threshold_csf (see `Threshold \
        <https://nipype.readthedocs.io/en/0.12.1/interfaces/generated/nipype.\
        interfaces.fsl.maths.html#threshold>`_ for arguments)

    Inputs:

        inputnode:
            brain_file: T1 image, after extraction and norm bin_norm_intensity

            seg_file: indexed  with all tissues as index file

        arguments:
            params: dictionary of node sub-parameters (from a json file)

            name: pipeline name (default = "segment_atropos_pipe")

    Outputs:

        threshold_csf.out_file:
            csf tissue intensity mask in subject space
        threshold_gm.out_file:
            grey matter tissue intensity mask in subject space
        threshold_wm.out_file:
            white matter tissue intensity mask in subject space

    """
    # creating pipeline
    segment_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(
        niu.IdentityInterface(fields=["brain_file", "seg_file"]),
        name='inputnode')

    # bin_norm_intensity (a cheat from Kepkee if I understood well!)
    bin_norm_intensity = pe.Node(fsl.UnaryMaths(), name="bin_norm_intensity")
    bin_norm_intensity.inputs.operation = "bin"

    segment_pipe.connect(inputnode, "brain_file", bin_norm_intensity,
                         "in_file")

    # merging priors as a list
    split_seg = pe.Node(niu.Function(input_names=['nii_file'],
                                     output_names=['list_split_files'],
                                     function=split_indexed_mask),
                        name='split_seg')

    segment_pipe.connect(inputnode, 'seg_file', split_seg, "nii_file")

    # Atropos
    seg_at = NodeParams(AtroposN4(),
                        params=parse_key(params, "Atropos"),
                        name='seg_at')

    segment_pipe.connect(inputnode, "brain_file", seg_at, "brain_file")
    segment_pipe.connect(bin_norm_intensity, 'out_file', seg_at,
                         "brainmask_file")
    segment_pipe.connect(split_seg, 'list_split_files', seg_at, "priors")

    # on segmentation indexed mask (with labels)
    # 1 -> CSF
    # 2 -> GM
    # 3 -> sub cortical?
    # 4 -> WM
    # 5 -> ?

    thd_nodes = {}
    for key, tissue in {0: 'csf', 1: 'gm', 3: 'wm'}.items():

        tmp_node = NodeParams(fsl.Threshold(),
                              params=parse_key(params, "threshold_" + tissue),
                              name="threshold_" + tissue)

        segment_pipe.connect(seg_at, ('segmented_files', get_elem, key),
                             tmp_node, 'in_file')

        thd_nodes[tissue] = tmp_node

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        "segmented_file", "threshold_gm", "threshold_wm", "threshold_csf"
    ]),
                         name='outputnode')

    segment_pipe.connect(seg_at, 'segmented_file', outputnode,
                         'segmented_file')
    segment_pipe.connect(thd_nodes["gm"], 'out_file', outputnode,
                         'threshold_gm')
    segment_pipe.connect(thd_nodes["wm"], 'out_file', outputnode,
                         'threshold_wm')
    segment_pipe.connect(thd_nodes["csf"], 'out_file', outputnode,
                         'threshold_csf')

    return segment_pipe
Esempio n. 17
0
def create_mask_from_seg_pipe(params={}, name="mask_from_seg_pipe"):
    """
    Description:  mask from segmentation tissues

    #TODO To be added if required (was in old_segment before)

    Function:

        - Compute union of those 3 tissues;
        - Apply morphological opening on the union mask
        - Fill holes

    Inputs:

        mask_gm, mask_wm:
            binary mask for grey matter and white matter
    Outputs:

        fill_holes.out_file:
            filled mask after erode

        fill_holes_dil.out_file
            filled mask after dilate
    """

    # creating pipeline
    seg_pipe = pe.Workflow(name=name)

    # Creating inputnode
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['mask_gm', 'mask_wm', 'mask_csf', 'indiv_params']),
                        name='inputnode')

    # bin_gm
    bin_gm = pe.Node(interface=fsl.UnaryMaths(), name="bin_gm")
    bin_gm.inputs.operation = "fillh"

    seg_pipe.connect(inputnode, 'mask_gm', bin_gm, 'in_file')

    # bin_csf
    bin_csf = pe.Node(interface=fsl.UnaryMaths(), name="bin_csf")
    bin_csf.inputs.operation = "fillh"

    seg_pipe.connect(inputnode, 'mask_csf', bin_csf, 'in_file')

    # bin_wm
    bin_wm = pe.Node(interface=fsl.UnaryMaths(), name="bin_wm")
    bin_wm.inputs.operation = "fillh"

    seg_pipe.connect(inputnode, 'mask_wm', bin_wm, 'in_file')

    # Compute union of the 3 tissues
    # Done with 2 fslmaths as it seems to hard to do it
    wmgm_union = pe.Node(fsl.BinaryMaths(), name="wmgm_union")
    wmgm_union.inputs.operation = "add"
    seg_pipe.connect(bin_gm, 'out_file', wmgm_union, 'in_file')
    seg_pipe.connect(bin_wm, 'out_file', wmgm_union, 'operand_file')

    tissues_union = pe.Node(fsl.BinaryMaths(), name="tissues_union")
    tissues_union.inputs.operation = "add"
    seg_pipe.connect(wmgm_union, 'out_file', tissues_union, 'in_file')
    seg_pipe.connect(bin_csf, 'out_file', tissues_union, 'operand_file')

    # Opening (dilating) mask
    dilate_mask = NodeParams(fsl.DilateImage(),
                             params=parse_key(params, "dilate_mask"),
                             name="dilate_mask")

    dilate_mask.inputs.operation = "mean"  # Arbitrary operation
    seg_pipe.connect(tissues_union, 'out_file', dilate_mask, 'in_file')

    # fill holes of dilate_mask
    fill_holes_dil = pe.Node(BinaryFillHoles(), name="fill_holes_dil")
    seg_pipe.connect(dilate_mask, 'out_file', fill_holes_dil, 'in_file')

    # Eroding mask
    erode_mask = NodeParams(fsl.ErodeImage(),
                            params=parse_key(params, "erode_mask"),
                            name="erode_mask")

    seg_pipe.connect(tissues_union, 'out_file', erode_mask, 'in_file')

    # fill holes of erode_mask
    fill_holes = pe.Node(BinaryFillHoles(), name="fill_holes")
    seg_pipe.connect(erode_mask, 'out_file', fill_holes, 'in_file')

    # merge to index
    merge_indexed_mask = NodeParams(
        interface=niu.Function(input_names=[
            "mask_csf_file", "mask_wm_file", "mask_gm_file", "index_csf",
            "index_gm", "index_wm"
        ],
                               output_names=['indexed_mask'],
                               function=merge_masks),
        params=parse_key(params, "merge_indexed_mask"),
        name="merge_indexed_mask")

    seg_pipe.connect(bin_gm, 'out_file', merge_indexed_mask, "mask_gm_file")
    seg_pipe.connect(bin_wm, 'out_file', merge_indexed_mask, "mask_wm_file")
    seg_pipe.connect(bin_csf, 'out_file', merge_indexed_mask, "mask_csf_file")

    return seg_pipe
Esempio n. 18
0
    import nibabel as nb
    input = posteriors
    GM = posteriors[1]  #posterior_01
    print(GM)
    return GM


get_gm = Node(name='Get_GM',
              interface=Function(input_names=['posteriors'],
                                 output_names=['GM'],
                                 function=Get_GM))

#-----------------------------------------------------------------------------------------------------
# In[1]:
#Make a mask of the warped image, to use it with atropos
binarize_warped_image = Node(fsl.UnaryMaths(), name='Binarize_Warped_Image')
binarize_warped_image.inputs.operation = 'bin'
binarize_warped_image.output_datatype = 'char'

#-----------------------------------------------------------------------------------------------------
# In[1]:
#Multiply by Jacobian determinant to ge the modulate image
modulate_GM = Node(ants.MultiplyImages(), name='Modulate_GM')
modulate_GM.inputs.dimension = 3
modulate_GM.inputs.output_product_image = 'Modulated_GM.nii.gz'

#-----------------------------------------------------------------------------------------------------
# In[1]:
#Smooth the modulated images
smoothing = Node(fsl.Smooth(), name='Smoothing')
smoothing.iterables = ('fwhm', [1.5, 2, 2.3, 2.7, 3])
Esempio n. 19
0
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split1,
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split2,
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split3
]

# Node 13
node_select3 = pe.Node(interface=util.Select(), name='node_select3')
node_select3.inputs.index = [2]
node_select3.inputs.inlist = [
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split1,
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split2,
    root_dir + nipype_dir + nlin_displacement_field_4d_only_split3
]

# Node 14
node_fsl_sqr1 = pe.Node(interface=fsl.UnaryMaths(), name='node_fsl_sqr1')
node_fsl_sqr1.inputs.operation = 'sqr'
#node_fsl_sqr1.inputs.in_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split1
node_fsl_sqr1.inputs.out_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split1

# Node 15
node_fsl_sqr2 = pe.Node(interface=fsl.UnaryMaths(), name='node_fsl_sqr2')
node_fsl_sqr2.inputs.operation = 'sqr'
#node_fsl_sqr2.inputs.in_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split2
node_fsl_sqr2.inputs.out_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split2

# Node 16
node_fsl_sqr3 = pe.Node(interface=fsl.UnaryMaths(), name='node_fsl_sqr3')
node_fsl_sqr3.inputs.operation = 'sqr'
#node_fsl_sqr3.inputs.in_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split3
node_fsl_sqr3.inputs.out_file = root_dir + nipype_dir + nlin_displacement_field_4d_only_split3
Esempio n. 20
0
def _create_split_hemi_pipe(params, params_template, name="split_hemi_pipe"):
    """Description: Split segmentated tissus according hemisheres after \
    removal of cortical structure

    Processing steps:

    - TODO

    Params:

        - None so far

    Inputs:

        inputnode:

            warpinv_file:
                non-linear transformation (from NMT_subject_align)

            inv_transfo_file:
                inverse transformation

            aff_file:
                affine transformation file

            t1_ref_file:
                preprocessd T1

            segmented_file:
                from atropos segmentation, with all the tissues segmented

        arguments:

            params:
                dictionary of node sub-parameters (from a json file)

            name:
                pipeline name (default = "split_hemi_pipe")

    Outputs:
    """
    split_hemi_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'warpinv_file', 'inv_transfo_file', 'aff_file', 't1_ref_file',
        'segmented_file'
    ]),
                        name='inputnode')

    # get values

    if "cereb_template" in params_template.keys():
        cereb_template_file = params_template["cereb_template"]

        # ### cereb
        # Binarize cerebellum
        bin_cereb = pe.Node(interface=fsl.UnaryMaths(), name='bin_cereb')
        bin_cereb.inputs.operation = "bin"

        bin_cereb.inputs.in_file = cereb_template_file

        # Warp cereb brainmask to subject space
        warp_cereb = pe.Node(interface=reg.NwarpApplyPriors(),
                             name='warp_cereb')

        warp_cereb.inputs.in_file = cereb_template_file
        warp_cereb.inputs.out_file = cereb_template_file
        warp_cereb.inputs.interp = "NN"
        warp_cereb.inputs.args = "-overwrite"

        split_hemi_pipe.connect(bin_cereb, 'out_file', warp_cereb, 'in_file')
        split_hemi_pipe.connect(inputnode, 'aff_file', warp_cereb, 'master')
        split_hemi_pipe.connect(inputnode, 'warpinv_file', warp_cereb, "warp")

        # Align cereb template
        align_cereb = pe.Node(interface=afni.Allineate(), name='align_cereb')

        align_cereb.inputs.final_interpolation = "nearestneighbour"
        align_cereb.inputs.overwrite = True
        align_cereb.inputs.outputtype = "NIFTI_GZ"

        split_hemi_pipe.connect(warp_cereb, 'out_file', align_cereb,
                                "in_file")  # -source
        split_hemi_pipe.connect(inputnode, 't1_ref_file', align_cereb,
                                "reference")  # -base
        split_hemi_pipe.connect(inputnode, 'inv_transfo_file', align_cereb,
                                "in_matrix")  # -1Dmatrix_apply

    if "L_hemi_template" in params_template.keys() and \
            "R_hemi_template" in params_template.keys():

        L_hemi_template_file = params_template["L_hemi_template"]
        R_hemi_template_file = params_template["R_hemi_template"]

        # Warp L hemi template brainmask to subject space
        warp_L_hemi = pe.Node(interface=reg.NwarpApplyPriors(),
                              name='warp_L_hemi')

        warp_L_hemi.inputs.in_file = L_hemi_template_file
        warp_L_hemi.inputs.out_file = L_hemi_template_file
        warp_L_hemi.inputs.interp = "NN"
        warp_L_hemi.inputs.args = "-overwrite"

        split_hemi_pipe.connect(inputnode, 'aff_file', warp_L_hemi, 'master')
        split_hemi_pipe.connect(inputnode, 'warpinv_file', warp_L_hemi, "warp")

        # Align L hemi template
        align_L_hemi = pe.Node(interface=afni.Allineate(), name='align_L_hemi')

        align_L_hemi.inputs.final_interpolation = "nearestneighbour"
        align_L_hemi.inputs.overwrite = True
        align_L_hemi.inputs.outputtype = "NIFTI_GZ"

        split_hemi_pipe.connect(warp_L_hemi, 'out_file', align_L_hemi,
                                "in_file")  # -source
        split_hemi_pipe.connect(inputnode, 't1_ref_file', align_L_hemi,
                                "reference")  # -base
        split_hemi_pipe.connect(inputnode, 'inv_transfo_file', align_L_hemi,
                                "in_matrix")  # -1Dmatrix_apply

        # Warp R hemi template brainmask to subject space
        warp_R_hemi = pe.Node(interface=reg.NwarpApplyPriors(),
                              name='warp_R_hemi')

        warp_R_hemi.inputs.in_file = R_hemi_template_file
        warp_R_hemi.inputs.out_file = R_hemi_template_file
        warp_R_hemi.inputs.interp = "NN"
        warp_R_hemi.inputs.args = "-overwrite"

        split_hemi_pipe.connect(inputnode, 'aff_file', warp_R_hemi, 'master')
        split_hemi_pipe.connect(inputnode, 'warpinv_file', warp_R_hemi, "warp")

        # Align R hemi template
        align_R_hemi = pe.Node(interface=afni.Allineate(), name='align_R_hemi')

        align_R_hemi.inputs.final_interpolation = "nearestneighbour"
        align_R_hemi.inputs.overwrite = True
        align_R_hemi.inputs.outputtype = "NIFTI_GZ"

        split_hemi_pipe.connect(warp_R_hemi, 'out_file', align_R_hemi,
                                "in_file")  # -source
        split_hemi_pipe.connect(inputnode, 't1_ref_file', align_R_hemi,
                                "reference")  # -base
        split_hemi_pipe.connect(inputnode, 'inv_transfo_file', align_R_hemi,
                                "in_matrix")  # -1Dmatrix_apply

    elif "LR_hemi_template" in params_template.keys():

        LR_hemi_template_file = params_template["LR_hemi_template"]

        # Warp LR hemi template brainmask to subject space
        warp_LR_hemi = pe.Node(interface=reg.NwarpApplyPriors(),
                               name='warp_LR_hemi')

        warp_LR_hemi.inputs.in_file = LR_hemi_template_file
        warp_LR_hemi.inputs.out_file = LR_hemi_template_file
        warp_LR_hemi.inputs.interp = "NN"
        warp_LR_hemi.inputs.args = "-overwrite"

        split_hemi_pipe.connect(inputnode, 'aff_file', warp_LR_hemi, 'master')
        split_hemi_pipe.connect(inputnode, 'warpinv_file', warp_LR_hemi,
                                "warp")

        # Align LR hemi template
        align_LR_hemi = pe.Node(interface=afni.Allineate(),
                                name='align_LR_hemi')

        align_LR_hemi.inputs.final_interpolation = "nearestneighbour"
        align_LR_hemi.inputs.overwrite = True
        align_LR_hemi.inputs.outputtype = "NIFTI_GZ"

        split_hemi_pipe.connect(warp_LR_hemi, 'out_file', align_LR_hemi,
                                "in_file")  # -source
        split_hemi_pipe.connect(inputnode, 't1_ref_file', align_LR_hemi,
                                "reference")  # -base
        split_hemi_pipe.connect(inputnode, 'inv_transfo_file', align_LR_hemi,
                                "in_matrix")  # -1Dmatrix_apply

        split_LR = pe.Node(interface=niu.Function(
            input_names=["LR_mask_file"],
            output_names=["L_mask_file", "R_mask_file"],
            function=split_LR_mask),
                           name="split_LR")

        split_hemi_pipe.connect(align_LR_hemi, "out_file", split_LR,
                                'LR_mask_file')

    else:
        print("Error, could not find LR_hemi_template or L_hemi_template and \
            R_hemi_template, skipping")
        print(params_template.keys())

        exit()

    # Using LH and RH masks to obtain hemisphere segmentation masks
    calc_L_hemi = pe.Node(interface=afni.Calc(), name='calc_L_hemi')
    calc_L_hemi.inputs.expr = 'a*b/b'
    calc_L_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 'segmented_file', calc_L_hemi,
                            "in_file_a")

    if "LR_hemi_template" in params_template.keys():
        split_hemi_pipe.connect(split_LR, 'L_mask_file', calc_L_hemi,
                                "in_file_b")
    else:
        split_hemi_pipe.connect(align_L_hemi, 'out_file', calc_L_hemi,
                                "in_file_b")

    # R_hemi
    calc_R_hemi = pe.Node(interface=afni.Calc(), name='calc_R_hemi')
    calc_R_hemi.inputs.expr = 'a*b/b'
    calc_R_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 'segmented_file', calc_R_hemi,
                            "in_file_a")

    if "LR_hemi_template" in params_template.keys():

        split_hemi_pipe.connect(split_LR, 'R_mask_file', calc_R_hemi,
                                "in_file_b")
    else:
        split_hemi_pipe.connect(align_R_hemi, 'out_file', calc_R_hemi,
                                "in_file_b")

    # remove cerebellum from left and right brain segmentations
    calc_nocb_L_hemi = pe.Node(interface=afni.Calc(), name='calc_nocb_L_hemi')
    calc_nocb_L_hemi.inputs.expr = '(a*(not (b)))'
    calc_nocb_L_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_L_hemi, 'out_file', calc_nocb_L_hemi,
                            "in_file_a")
    split_hemi_pipe.connect(align_cereb, 'out_file', calc_nocb_L_hemi,
                            "in_file_b")

    calc_nocb_R_hemi = pe.Node(interface=afni.Calc(), name='calc_nocb_R_hemi')
    calc_nocb_R_hemi.inputs.expr = '(a*(not (b)))'
    calc_nocb_R_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_R_hemi, 'out_file', calc_nocb_R_hemi,
                            "in_file_a")
    split_hemi_pipe.connect(align_cereb, 'out_file', calc_nocb_R_hemi,
                            "in_file_b")

    # create L/R GM and WM no-cerebellum masks from subject brain segmentation
    calc_GM_nocb_L_hemi = pe.Node(interface=afni.Calc(),
                                  name='calc_GM_nocb_L_hemi')
    calc_GM_nocb_L_hemi.inputs.expr = 'iszero(a-2)'
    calc_GM_nocb_L_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_nocb_L_hemi, 'out_file', calc_GM_nocb_L_hemi,
                            "in_file_a")

    calc_WM_nocb_L_hemi = pe.Node(interface=afni.Calc(),
                                  name='calc_WM_nocb_L_hemi')
    calc_WM_nocb_L_hemi.inputs.expr = 'iszero(a-3)'
    calc_WM_nocb_L_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_nocb_L_hemi, 'out_file', calc_WM_nocb_L_hemi,
                            "in_file_a")

    calc_GM_nocb_R_hemi = pe.Node(interface=afni.Calc(),
                                  name='calc_GM_nocb_R_hemi')
    calc_GM_nocb_R_hemi.inputs.expr = 'iszero(a-2)'
    calc_GM_nocb_R_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_nocb_R_hemi, 'out_file', calc_GM_nocb_R_hemi,
                            "in_file_a")

    calc_WM_nocb_R_hemi = pe.Node(interface=afni.Calc(),
                                  name='calc_WM_nocb_R_hemi')
    calc_WM_nocb_R_hemi.inputs.expr = 'iszero(a-3)'
    calc_WM_nocb_R_hemi.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(calc_nocb_R_hemi, 'out_file', calc_WM_nocb_R_hemi,
                            "in_file_a")

    # Extract Cerebellum using template mask transformed to subject space
    extract_cereb = pe.Node(interface=afni.Calc(), name='extract_cereb')
    extract_cereb.inputs.expr = 'a*b/b'
    extract_cereb.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 't1_ref_file', extract_cereb,
                            "in_file_a")
    split_hemi_pipe.connect(align_cereb, 'out_file', extract_cereb,
                            "in_file_b")

    # Extract L.GM using template mask transformed to subject space
    extract_L_GM = pe.Node(interface=afni.Calc(), name='extract_L_GM')
    extract_L_GM.inputs.expr = 'a*b/b'
    extract_L_GM.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 't1_ref_file', extract_L_GM,
                            "in_file_a")
    split_hemi_pipe.connect(calc_GM_nocb_L_hemi, 'out_file', extract_L_GM,
                            "in_file_b")

    # Extract L.WM using template mask transformed to subject space
    extract_L_WM = pe.Node(interface=afni.Calc(), name='extract_L_WM')
    extract_L_WM.inputs.expr = 'a*b/b'
    extract_L_WM.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 't1_ref_file', extract_L_WM,
                            "in_file_a")
    split_hemi_pipe.connect(calc_WM_nocb_L_hemi, 'out_file', extract_L_WM,
                            "in_file_b")

    # Extract L.GM using template mask transformed to subject space
    extract_R_GM = pe.Node(interface=afni.Calc(), name='extract_R_GM')
    extract_R_GM.inputs.expr = 'a*b/b'
    extract_R_GM.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 't1_ref_file', extract_R_GM,
                            "in_file_a")
    split_hemi_pipe.connect(calc_GM_nocb_R_hemi, 'out_file', extract_R_GM,
                            "in_file_b")

    # Extract L.WM using template mask transformed to subject space
    extract_R_WM = pe.Node(interface=afni.Calc(), name='extract_R_WM')
    extract_R_WM.inputs.expr = 'a*b/b'
    extract_R_WM.inputs.outputtype = 'NIFTI_GZ'

    split_hemi_pipe.connect(inputnode, 't1_ref_file', extract_R_WM,
                            "in_file_a")
    split_hemi_pipe.connect(calc_WM_nocb_R_hemi, 'out_file', extract_R_WM,
                            "in_file_b")

    return split_hemi_pipe
palm_corr = Node(name='palm_corr',
                 interface=Function(
                     input_names=['in_file', 'mask', 'design', 'contrast'],
                     output_names=['tstat1', 'tstat2', 'P_value1', 'P_value2'],
                     function=palm_corr))

palm_corr.iterables = [("design", designs), ("contrast", contrasts)]
palm_corr.synchronize = True  # synchronize here serves to make sure design and contrast are used in pairs
# Not using all the possible permuatations
#-----------------------------------------------------------------------------------------------------
# use the tstat maps to calculate r-pearson correlation coeeficient
# >>> fslmaths tstat.nii.gz -sqr tstat2.nii.gz
# >>> fslmaths tstat.nii.gz -abs -div tstat.nii.gz sign.nii.gz
# >>> fslmaths tstat2.nii.gz -add DF denominator.nii.gz
# >>> fslmaths tstat2.nii.gz -div denominator.nii.gz -sqrt -mul sign.nii.gz correlation.nii.gz
square1 = Node(fsl.UnaryMaths(), name='square1')
square1.inputs.operation = 'sqr'
square1.inputs.out_file = 'tstat1_squared.nii.gz'

sign_t1 = Node(fsl.ImageMaths(), name='sign_t1')
sign_t1.inputs.op_string = '-abs -div'
sign_t1.inputs.out_file = 'sign_tstat1.nii.gz'

add_df1 = Node(fsl.BinaryMaths(), name='add_df1')
add_df1.inputs.operation = 'add'
add_df1.inputs.operand_value = 27  #29 animals-2contrast = 27 dof
add_df1.inputs.out_file = 'denominator_tstat1.nii.gz'

div_by_denom1 = Node(fsl.BinaryMaths(), name='div_by_denom1')
div_by_denom1.inputs.operation = 'div'
div_by_denom1.inputs.out_file = 'divided_by_denominator.nii.gz'
Esempio n. 22
0
def create_nii_to_mesh_fs_pipe(params, name="nii_to_mesh_fs_pipe"):
    """
    Description: surface generation using freesurfer tools

    Params:

    - fill_wm (see `MRIFill <https://nipype.readthedocs.io/en/0.12.1/\
    interfaces/generated/nipype.interfaces.freesurfer.utils.html#mrifill>`_) \
    - also available as :ref:`indiv_params <indiv_params>`


    Inputs:

        inputnode:

            wm_mask_file:
                segmented white matter mask (binary) in template space

            reg_brain_file:
                preprocessd T1, registered to template

            indiv_params (opt):
                dict with individuals parameters for some nodes

        arguments:

            params:
                dictionary of node sub-parameters (from a json file)

            name:
                pipeline name (default = "nii_to_mesh_fs_pipe")

    Outputs:

    """
    # creating pipeline
    nii_to_mesh_fs_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['wm_mask_file', 'reg_brain_file', 'indiv_params']),
                        name='inputnode')

    # bin_wm
    bin_wm = pe.Node(interface=fsl.UnaryMaths(), name="bin_wm")
    bin_wm.inputs.operation = "fillh"

    nii_to_mesh_fs_pipe.connect(inputnode, 'wm_mask_file', bin_wm, 'in_file')

    # resample everything
    refit_wm = pe.Node(interface=afni.Refit(), name="refit_wm")
    refit_wm.inputs.args = "-xdel 1.0 -ydel 1.0 -zdel 1.0 -keepcen"

    nii_to_mesh_fs_pipe.connect(bin_wm, 'out_file', refit_wm, 'in_file')

    # resample everything
    refit_reg = pe.Node(interface=afni.Refit(), name="refit_reg")
    refit_reg.inputs.args = "-xdel 1.0 -ydel 1.0 -zdel 1.0 -keepcen"

    nii_to_mesh_fs_pipe.connect(inputnode, 'reg_brain_file', refit_reg,
                                'in_file')

    # mri_convert wm to freesurfer mgz
    convert_wm = pe.Node(interface=fs.MRIConvert(), name="convert_wm")
    convert_wm.inputs.out_type = "mgz"
    convert_wm.inputs.conform = True

    nii_to_mesh_fs_pipe.connect(refit_wm, 'out_file', convert_wm, 'in_file')

    # mri_convert reg to freesurfer mgz
    convert_reg = pe.Node(interface=fs.MRIConvert(), name="convert_reg")
    convert_reg.inputs.out_type = "mgz"
    convert_reg.inputs.conform = True

    nii_to_mesh_fs_pipe.connect(refit_reg, 'out_file', convert_reg, 'in_file')

    # mri_fill
    fill_wm = NodeParams(interface=fs.MRIFill(),
                         params=parse_key(params, "fill_wm"),
                         name="fill_wm")

    fill_wm.inputs.out_file = "filled.mgz"

    nii_to_mesh_fs_pipe.connect(convert_wm, 'out_file', fill_wm, 'in_file')

    nii_to_mesh_fs_pipe.connect(inputnode,
                                ("indiv_params", parse_key, "fill_wm"),
                                fill_wm, 'indiv_params')

    # pretesselate wm
    pretess_wm = pe.Node(interface=fs.MRIPretess(), name="pretess_wm")
    pretess_wm.inputs.label = 255

    nii_to_mesh_fs_pipe.connect(fill_wm, 'out_file', pretess_wm, 'in_filled')

    nii_to_mesh_fs_pipe.connect(convert_reg, 'out_file', pretess_wm, 'in_norm')

    # tesselate wm lh
    tess_wm_lh = pe.Node(interface=fs.MRITessellate(), name="tess_wm_lh")
    tess_wm_lh.inputs.label_value = 255
    tess_wm_lh.inputs.out_file = "lh_tess"

    nii_to_mesh_fs_pipe.connect(pretess_wm, 'out_file', tess_wm_lh, 'in_file')

    # tesselate wm rh
    tess_wm_rh = pe.Node(interface=fs.MRITessellate(), name="tess_wm_rh")
    tess_wm_rh.inputs.label_value = 127
    tess_wm_rh.inputs.out_file = "rh_tess"

    nii_to_mesh_fs_pipe.connect(pretess_wm, 'out_file', tess_wm_rh, 'in_file')

    # ExtractMainComponent lh
    extract_mc_lh = pe.Node(interface=fs.ExtractMainComponent(),
                            name="extract_mc_lh")

    nii_to_mesh_fs_pipe.connect(tess_wm_lh, 'surface', extract_mc_lh,
                                'in_file')

    extract_mc_lh.inputs.out_file = "lh.lh_tess.maincmp"

    # ExtractMainComponent rh
    extract_mc_rh = pe.Node(interface=fs.ExtractMainComponent(),
                            name="extract_mc_rh")

    nii_to_mesh_fs_pipe.connect(tess_wm_rh, 'surface', extract_mc_rh,
                                'in_file')

    extract_mc_rh.inputs.out_file = "rh.rh_tess.maincmp"

    # SmoothTessellation lh
    smooth_tess_lh = pe.Node(interface=fs.SmoothTessellation(),
                             name="smooth_tess_lh")
    smooth_tess_lh.inputs.disable_estimates = True

    nii_to_mesh_fs_pipe.connect(extract_mc_lh, 'out_file', smooth_tess_lh,
                                'in_file')

    # SmoothTessellation rh
    smooth_tess_rh = pe.Node(interface=fs.SmoothTessellation(),
                             name="smooth_tess_rh")
    smooth_tess_rh.inputs.disable_estimates = True

    nii_to_mesh_fs_pipe.connect(extract_mc_rh, 'out_file', smooth_tess_rh,
                                'in_file')

    return nii_to_mesh_fs_pipe
motionMask = pe.Node(fsl.maths.ApplyMask(output_type='NIFTI_GZ'),
                     name='motionMask')


# Pick the middle volume from the given run
def middleVol(func):
    from nibabel import load
    funcfile = func
    _, _, _, timepoints = load(funcfile).shape
    return int((timepoints / 2) - 1)


extractEPIref = pe.Node(fsl.ExtractROI(t_size=1, output_type='NIFTI_GZ'),
                        name='extractEPIref')

maskEPIref = pe.Node(fsl.UnaryMaths(operation='bin', output_type='NIFTI_GZ'),
                     name='maskEPIref')

# Despike raw data
despike = pe.Node(afni.preprocess.Despike(outputtype='NIFTI_GZ'),
                  name="despike")

# Remove negative values (from despike procedure)
posLimit = pe.Node(fsl.maths.Threshold(nan2zeros=True,
                                       thresh=0,
                                       output_type='NIFTI_GZ'),
                   name='posLimit')

## Fieldmap workflow
# Select magnitude image
get_mag = pe.Node(fsl.ExtractROI(t_min=1, t_size=1, output_type='NIFTI_GZ'),
Esempio n. 24
0
def ct_brain_extraction(data,
                        working_directory=None,
                        fractional_intensity_threshold=0.01,
                        save_output=False,
                        fsl_path=None):
    """
    Automatic brain extraction of non contrast head CT images using bet2 by fsl.
    Ref.: Muschelli J, Ullman NL, Mould WA, Vespa P, Hanley DF, Crainiceanu CM. Validated automatic brain extraction of head CT images. NeuroImage. 2015 Jul 1;114:379–85.

    :param data: [str; np.ndarray] path to input data or input data in form of np.ndarray (x, y, z)
    :param working_directory: [str] path to directory to use to save temporary files and final output files
    :param fractional_intensity_threshold: fractional intensity threshold (0->1); default=0.01; smaller values give larger brain outline estimates
    :param save_output: [boolean] save or discard output
    :param fsl_path: [str], Optional path to fsl executable to help nipype find it
    :return: brain_mask, masked_image: np.ndarray
    """

    if fsl_path is not None:
        os.environ["PATH"] += os.pathsep + fsl_path
    os.environ["FSLOUTPUTTYPE"] = 'NIFTI'

    temp_files = []
    if working_directory is None:
        working_directory = tempfile.mkdtemp()

    if isinstance(data, np.ndarray):
        data_path = os.path.join(working_directory, 'temp_bet_input.nii')
        data_img = nib.Nifti1Image(data.astype('float64'), affine=None)
        nib.save(data_img, data_path)
        temp_files.append(data_path)
    elif os.path.exists(data):
        data_path = data
    else:
        raise NotImplementedError('Data has to be a path or an np.ndarray')

    output_file = os.path.join(working_directory, 'bet_output.nii')
    output_mask_file = os.path.join(working_directory, 'bet_output_mask.nii')
    if not save_output:
        temp_files.append(output_file)
        temp_files.append(output_mask_file)
    temp_intermediate_file = os.path.join(working_directory,
                                          'temp_intermediate_file.nii')
    temp_files.append(temp_intermediate_file)

    # Thresholding Image to 0-100
    # cli: fslmaths "${img}" -thr 0.000000 -uthr 100.000000  "${outfile}"
    thresholder1 = fsl.Threshold()
    thresholder1.inputs.in_file = data_path
    thresholder1.inputs.out_file = output_file
    thresholder1.inputs.thresh = 0
    thresholder1.inputs.direction = 'below'
    thresholder1.inputs.output_type = 'NIFTI'
    thresholder1.run()

    thresholder2 = fsl.Threshold()
    thresholder2.inputs.in_file = output_file
    thresholder2.inputs.out_file = output_file
    thresholder2.inputs.thresh = 100
    thresholder2.inputs.direction = 'above'
    thresholder2.inputs.output_type = 'NIFTI'
    thresholder2.run()

    # Creating 0 - 100 mask to remask after filling
    # cli: fslmaths "${outfile}"  -bin   "${tmpfile}";
    # cli: fslmaths "${tmpfile}.nii.gz" -bin -fillh "${tmpfile}"
    binarizer1 = fsl.UnaryMaths()
    binarizer1.inputs.in_file = output_file
    binarizer1.inputs.out_file = temp_intermediate_file
    binarizer1.inputs.operation = 'bin'
    binarizer1.inputs.output_type = 'NIFTI'
    binarizer1.run()

    binarizer2 = fsl.UnaryMaths()
    binarizer2.inputs.in_file = temp_intermediate_file
    binarizer2.inputs.out_file = temp_intermediate_file
    binarizer2.inputs.operation = 'bin'
    binarizer2.inputs.output_type = 'NIFTI'
    binarizer2.run()

    fill_holes1 = fsl.UnaryMaths()
    fill_holes1.inputs.in_file = temp_intermediate_file
    fill_holes1.inputs.out_file = temp_intermediate_file
    fill_holes1.inputs.operation = 'fillh'
    fill_holes1.inputs.output_type = 'NIFTI'
    fill_holes1.run()

    # Presmoothing image
    # cli: fslmaths "${outfile}" - s 1 "${outfile}"
    smoothing = fsl.IsotropicSmooth()
    smoothing.inputs.in_file = output_file
    smoothing.inputs.out_file = output_file
    smoothing.inputs.sigma = 1
    smoothing.inputs.output_type = 'NIFTI'
    smoothing.run()

    # Remasking Smoothed Image
    # cli: fslmaths "${outfile}" - mas "${tmpfile}"  "${outfile}"
    masking1 = fsl.ApplyMask()
    masking1.inputs.in_file = output_file
    masking1.inputs.out_file = output_file
    masking1.inputs.mask_file = temp_intermediate_file
    masking1.inputs.output_type = 'NIFTI'
    masking1.run()

    # Running bet2
    # cli: bet2 "${outfile}" "${outfile}" - f ${intensity} - v
    try:
        btr = fsl.BET()
        btr.inputs.in_file = output_file
        btr.inputs.out_file = output_file
        btr.inputs.frac = fractional_intensity_threshold
        btr.inputs.output_type = 'NIFTI'
        btr.run()
    except Exception as e:  # sometimes nipype fails to find bet
        if fsl_path is not None:
            bet_path = os.path.join(fsl_path, 'bet2')
        else:
            bet_path = 'bet2'
        subprocess.run([
            bet_path, output_file, output_file, '-f',
            str(fractional_intensity_threshold)
        ])

    # Using fslfill to fill in any holes in mask
    # cli: fslmaths "${outfile}" - bin - fillh "${outfile}_Mask"
    binarizer3 = fsl.UnaryMaths()
    binarizer3.inputs.in_file = output_file
    binarizer3.inputs.out_file = output_mask_file
    binarizer3.inputs.operation = 'bin'
    binarizer3.inputs.output_type = 'NIFTI'
    binarizer3.run()

    fill_holes2 = fsl.UnaryMaths()
    fill_holes2.inputs.in_file = output_mask_file
    fill_holes2.inputs.out_file = output_mask_file
    fill_holes2.inputs.operation = 'fillh'
    fill_holes2.inputs.output_type = 'NIFTI'
    fill_holes2.run()

    # Using the filled mask to mask original image
    # cli: fslmaths "${img}" -mas "${outfile}_Mask"  "${outfile}"
    masking2 = fsl.ApplyMask()
    masking2.inputs.in_file = data_path
    masking2.inputs.out_file = output_file
    masking2.inputs.mask_file = output_mask_file
    masking2.inputs.output_type = 'NIFTI'
    masking2.run()

    brain_mask = nib.load(output_mask_file).get_fdata()
    masked_image = nib.load(output_file).get_fdata()

    # delete temporary files
    for file in temp_files:
        os.remove(file)

    if not save_output:
        shutil.rmtree(working_directory)

    return brain_mask, masked_image

nilearn_smoothing = Node(name='nilearn_smoothing',
                         interface=Function(input_names=['image'],
                                            output_names=['smoothed_output'],
                                            function=nilearn_smoothing))

#-----------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------
#mask only FA values > 0.2 to gurantee it is WM
thresh_FA = Node(fsl.Threshold(), name='thresh_FA')
thresh_FA.inputs.thresh = 0.2

#-----------------------------------------------------------------------------------------------------
#binarize this mask
binarize_FA = Node(fsl.UnaryMaths(), name='binarize_FA')
binarize_FA.inputs.operation = 'bin'
binarize_FA.inputs.output_datatype = 'char'

#-----------------------------------------------------------------------------------------------------
#randomise on the smoothed all images
randomise_VBA = Node(fsl.Randomise(), name='randomise_vba')
randomise_VBA.inputs.design_mat = design
randomise_VBA.inputs.tcon = contrast
randomise_VBA.inputs.num_perm = 10000
randomise_VBA.inputs.tfce = True
randomise_VBA.inputs.vox_p_values = True
randomise_VBA.inputs.base_name = 'VBA_'

#-----------------------------------------------------------------------------------------------------
DTI_TBSS_Wax.connect([
# wraps command fslmaths with -mul flag #

node_fslmath_multiply = pe.Node(interface=fsl.BinaryMaths(),
                                name='node_fslmath_multiply')
# uncomment for individual node testing #
#node_fslmath_multiply.inputs.in_file = root_dir + despot1_nuc
#node_fslmath_multiply.inputs.in_file = node_N4BiasFieldCorrection.inputs.output_image
node_fslmath_multiply.inputs.operand_file = root_dir + despot1_mask
node_fslmath_multiply.inputs.operation = "mul"
node_fslmath_multiply.inputs.out_file = root_dir + despot1_nuc_masked
#print node_fslmath_multiply.interface.cmdline

# wraps command fslmaths with -bin flag #

node_fslmath_binarize = pe.Node(interface=fsl.UnaryMaths(),
                                name='node_fslmath_binarize')
node_fslmath_binarize.inputs.operation = 'bin'
node_fslmath_binarize.inputs.in_file = root_dir + highres_bet
node_fslmath_binarize.inputs.out_file = root_dir + highres_mask
#print node_fslmath_binarize.interface.cmdline

# wraps command mri_convert #
# mRs = mri_Resample

#highres
node_mRs = pe.Node(interface=fsurfer.Resample(), name='node_mRs')
node_mRs.inputs.voxel_size = resampleVS
node_mRs.inputs.in_file = root_dir + highres
node_mRs.inputs.resampled_file = root_dir + resampled_highres
#print node_mRs.interface.cmdline
Esempio n. 27
0
def create_extract_pipe(params_template, params={}, name="extract_pipe"):
    """
    Description: Extract T1 brain using AtlasBrex

    Inputs:

        inputnode:
            restore_T1: preprocessed (debiased/denoised) T1 file name

            restore_T1: preprocessed (debiased/denoised)T2 file name

        arguments:
            params_template: dictionary of info about template

            params: dictionary of node sub-parameters (from a json file)

            name: pipeline name (default = "extract_pipe")

    Outputs:

        smooth_mask.out_file:
            Computed mask (after some smoothing)

    """

    # creating pipeline
    extract_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['restore_T1', 'restore_T2',
                                      "indiv_params"]),
        name='inputnode')

    # atlas_brex
    atlas_brex = NodeParams(AtlasBREX(),
                            params=parse_key(params, "atlas_brex"),
                            name='atlas_brex')

    extract_pipe.connect(inputnode, "restore_T1",
                         atlas_brex, 't1_restored_file')

    atlas_brex.inputs.NMT_file = params_template["template_head"]
    atlas_brex.inputs.NMT_SS_file = params_template["template_brain"]

    extract_pipe.connect(
            inputnode, ("indiv_params", parse_key, "atlas_brex"),
            atlas_brex, 'indiv_params')

    # mask_brex
    mask_brex = pe.Node(fsl.UnaryMaths(), name='mask_brex')
    mask_brex.inputs.operation = 'bin'

    extract_pipe.connect(atlas_brex, 'brain_file', mask_brex, 'in_file')

    # smooth_mask
    smooth_mask = pe.Node(fsl.UnaryMaths(), name='smooth_mask')
    smooth_mask.inputs.operation = "bin"
    smooth_mask.inputs.args = "-s 1 -thr 0.5 -bin"

    extract_pipe.connect(mask_brex, 'out_file', smooth_mask, 'in_file')

    # mult_T1
    mult_T1 = pe.Node(afni.Calc(), name='mult_T1')
    mult_T1.inputs.expr = "a*b"
    mult_T1.inputs.outputtype = 'NIFTI_GZ'

    extract_pipe.connect(inputnode, "restore_T1", mult_T1, 'in_file_a')
    extract_pipe.connect(smooth_mask, 'out_file', mult_T1, 'in_file_b')

    # mult_T2
    mult_T2 = pe.Node(afni.Calc(), name='mult_T2')
    mult_T2.inputs.expr = "a*b"
    mult_T2.inputs.outputtype = 'NIFTI_GZ'

    extract_pipe.connect(inputnode, 'restore_T2', mult_T2, 'in_file_a')
    extract_pipe.connect(smooth_mask, 'out_file', mult_T2, 'in_file_b')
    return extract_pipe
Esempio n. 28
0
def create_segment_atropos_pipe(params={},
                                name="segment_atropos_pipe",
                                space="native"):
    """
    Description: Segmentation with ANTS atropos script

    Params:
        - Atropos (see :class:`AtroposN4 <macapype.nodes.segment.AtroposN4>`)
        - threshold_gm, threshold_wm, threshold_csf (see `Threshold \
        <https://nipype.readthedocs.io/en/0.12.1/interfaces/generated/nipype.\
        interfaces.fsl.maths.html#threshold>`_ for arguments)

    Inputs:

        inputnode:
            brain_file: T1 image, after extraction and norm bin_norm_intensity

            gm_prior_file: grey matter tissue intensity file

            wm_prior_file: white matter tissue intensity file

            csf_prior_file: csf tissue intensity file

        arguments:
            params: dictionary of node sub-parameters (from a json file)

            name: pipeline name (default = "segment_atropos_pipe")

    Outputs:

        threshold_csf.out_file:
            csf tissue intensity mask in subject space
        threshold_gm.out_file:
            grey matter tissue intensity mask in subject space
        threshold_wm.out_file:
            white matter tissue intensity mask in subject space
    """
    # creating pipeline
    segment_pipe = pe.Workflow(name=name)

    # creating inputnode
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        "brain_file", "gm_prior_file", "wm_prior_file", "csf_prior_file"
    ]),
                        name='inputnode')

    # bin_norm_intensity (a cheat from Kepkee if I understood well!)
    bin_norm_intensity = pe.Node(fsl.UnaryMaths(), name="bin_norm_intensity")
    bin_norm_intensity.inputs.operation = "bin"

    segment_pipe.connect(inputnode, "brain_file", bin_norm_intensity,
                         "in_file")

    if "use_priors" in params.keys():

        # copying header from img to csf_prior_file
        copy_header_to_csf = pe.Node(niu.Function(
            input_names=['ref_img', 'img_to_modify'],
            output_names=['modified_img'],
            function=copy_header),
                                     name='copy_header_to_csf')

        segment_pipe.connect(inputnode, "brain_file", copy_header_to_csf,
                             "ref_img")
        segment_pipe.connect(inputnode, 'csf_prior_file', copy_header_to_csf,
                             "img_to_modify")

        # copying header from img to gm_prior_file
        copy_header_to_gm = pe.Node(niu.Function(
            input_names=['ref_img', 'img_to_modify'],
            output_names=['modified_img'],
            function=copy_header),
                                    name='copy_header_to_gm')

        segment_pipe.connect(inputnode, "brain_file", copy_header_to_gm,
                             "ref_img")
        segment_pipe.connect(inputnode, 'gm_prior_file', copy_header_to_gm,
                             "img_to_modify")

        # copying header from img to wm_prior_file
        copy_header_to_wm = pe.Node(niu.Function(
            input_names=['ref_img', 'img_to_modify'],
            output_names=['modified_img'],
            function=copy_header),
                                    name='copy_header_to_wm')

        segment_pipe.connect(inputnode, "brain_file", copy_header_to_wm,
                             "ref_img")
        segment_pipe.connect(inputnode, 'wm_prior_file', copy_header_to_wm,
                             "img_to_modify")

        # merging priors as a list
        merge_3_elem = pe.Node(niu.Function(
            input_names=['elem1', 'elem2', 'elem3'],
            output_names=['merged_list'],
            function=merge_3_elem_to_list),
                               name='merge_3_elem')

        # was like this before (1 -> csf, 2 -> gm, 3 -> wm, to check)
        segment_pipe.connect(copy_header_to_csf, 'modified_img', merge_3_elem,
                             "elem1")
        segment_pipe.connect(copy_header_to_gm, 'modified_img', merge_3_elem,
                             "elem2")
        segment_pipe.connect(copy_header_to_wm, 'modified_img', merge_3_elem,
                             "elem3")
    # Atropos
    seg_at = NodeParams(AtroposN4(),
                        params=parse_key(params, "Atropos"),
                        name='seg_at')

    segment_pipe.connect(inputnode, "brain_file", seg_at, "brain_file")
    segment_pipe.connect(bin_norm_intensity, 'out_file', seg_at,
                         "brainmask_file")

    if "use_priors" in params.keys():
        segment_pipe.connect(merge_3_elem, 'merged_list', seg_at, "priors")
        seg_at.inputs.prior_weight = params["use_priors"]

    # Threshold GM, WM and CSF
    thd_nodes = {}
    for i, tissue in enumerate(['csf', 'gm', 'wm']):
        tmp_node = NodeParams(fsl.Threshold(),
                              params=parse_key(params, "threshold_" + tissue),
                              name="threshold_" + tissue)

        segment_pipe.connect(seg_at, ('segmented_files', get_elem, i),
                             tmp_node, 'in_file')

        thd_nodes[tissue] = tmp_node

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        "segmented_file", "threshold_gm", "threshold_wm", "threshold_csf"
    ]),
                         name='outputnode')

    segment_pipe.connect(seg_at, 'segmented_file', outputnode,
                         'segmented_file')
    segment_pipe.connect(thd_nodes["gm"], 'out_file', outputnode,
                         'threshold_gm')
    segment_pipe.connect(thd_nodes["wm"], 'out_file', outputnode,
                         'threshold_wm')
    segment_pipe.connect(thd_nodes["csf"], 'out_file', outputnode,
                         'threshold_csf')

    return segment_pipe
def create_EPI_DistCorr(use_BET, wf_name='epi_distcorr'):
    """
    Fieldmap correction takes in an input magnitude image which is Skull Stripped (Tight).
    The magnitude images are obtained from each echo series. It also requires a phase image
    as an input, the phase image is a subtraction of the two phase images from each echo.

    Created on Thu Nov  9 10:44:47 2017
    @author: nrajamani

    Order of commands and inputs:

    -- SkullStrip:   3d-SkullStrip (or FSL-BET) is used to strip the non-brain (tissue) regions
                     from the fMRI
                     Parameters: -f, default: 0.5
                     in_file: fmap_mag
    -- fslmath_mag:  Magnitude image is eroded using the -ero option in fslmath, in order to remove
                     the non-zero voxels
                     Parameters: -ero
                     in_file:fmap_mag
    -- bet_anat   :  Brain extraction of the anat file to provide as an input for the epi-registration interface
                     Parameters: -f, default: 0.5
                     in_file: anat_file
    -- fast_anat  :  Fast segmentation to provide partial volume files of the anat file, which is further processed
                     to provide the white mater segmentation input for the epi-registration interface.
                     The most important output required from this is the second segment, (e.g.,'T1_brain_pve_2.nii.gz')
                     Parameters: -img_type = 1
                               -bias_iters = 10 (-I)
                               -bias_lowpass = 10 (-l)
                     in_file: brain_extracted anat_file
    -- fslmath_anat: The output of the FAST interface is then analyzed to select all the voxels with more than 50%
                     partial volume into the binary mask
                     Parameters: -thr = 0.5
                     in_file : T1_brain_pve_2
    -- fslmath_wmseg:The selected voxels are now used to create a binary mask which would can then be sent as the
                     white matter segmentation (wm_seg)
                     Parameters: -bin
                     in_file: T1_brain_pve_2
    -- Prepare      :Preparing the fieldmap.
                     Parameters: -deltaTE = default, 2.46 ms
                                 -Scanner = SIEMENS
                     in_files: fmap_phase
                               fmap_magnitude
                     For more details, check:https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide
    -- FUGUE        :One of the steps in EPI-DistCorrection toolbox, it unwarps the fieldmaps
                     Parameters: dwell_to_asymm ratio = (0.77e-3 * 3)/(2.46e-3)
                                 dwell time = 0.0005 ms
                                 in_file = field map which is a 4D image (containing 2 unwarpped image)
    """

    preproc = pe.Workflow(name=wf_name)

    inputNode = pe.Node(
        util.IdentityInterface(fields=['anat_file', 'fmap_pha', 'fmap_mag']),
        name='inputspec')

    inputNode_delTE = pe.Node(util.IdentityInterface(fields=['deltaTE']),
                              name='deltaTE_input')

    inputNode_dwellT = pe.Node(util.IdentityInterface(fields=['dwellT']),
                               name='dwellT_input')

    inputNode_dwell_asym_ratio = pe.Node(
        util.IdentityInterface(fields=['dwell_asym_ratio']),
        name='dwell_asym_ratio_input')

    inputNode_bet_frac = pe.Node(util.IdentityInterface(fields=['bet_frac']),
                                 name='bet_frac_input')

    inputNode_afni_threshold = pe.Node(
        util.IdentityInterface(fields=['afni_threshold']),
        name='afni_threshold_input')

    outputNode = pe.Node(util.IdentityInterface(
        fields=['fieldmap', 'fmap_despiked', 'fmapmagbrain', 'fieldmapmask']),
                         name='outputspec')

    # Skull-strip, outputs a masked image file
    if use_BET == False:
        skullstrip_args = pe.Node(util.Function(input_names=['shrink_fac'],
                                                output_names=['expr'],
                                                function=createAFNIiterable),
                                  name='distcorr_skullstrip_arg')

        preproc.connect(inputNode_afni_threshold, 'afni_threshold',
                        skullstrip_args, 'shrink_fac')

        bet = pe.Node(interface=afni.SkullStrip(), name='bet')
        bet.inputs.outputtype = 'NIFTI_GZ'
        preproc.connect(skullstrip_args, 'expr', bet, 'args')
        preproc.connect(inputNode, 'fmap_mag', bet, 'in_file')
        preproc.connect(bet, 'out_file', outputNode, 'magnitude_image')
    else:
        bet = pe.Node(interface=fsl.BET(), name='bet')
        bet.inputs.output_type = 'NIFTI_GZ'
        preproc.connect(inputNode_bet_frac, 'bet_frac', bet, 'frac')
        preproc.connect(inputNode, 'fmap_mag', bet, 'in_file')
        preproc.connect(bet, 'out_file', outputNode, 'magnitude_image')

    # Prepare Fieldmap

    # prepare the field map
    prepare = pe.Node(interface=fsl.epi.PrepareFieldmap(), name='prepare')
    prepare.inputs.output_type = "NIFTI_GZ"
    preproc.connect(inputNode_delTE, 'deltaTE', prepare, 'delta_TE')
    preproc.connect(inputNode, 'fmap_pha', prepare, 'in_phase')
    preproc.connect(bet, 'out_file', prepare, 'in_magnitude')
    preproc.connect(prepare, 'out_fieldmap', outputNode, 'fieldmap')

    # erode the masked magnitude image
    fslmath_mag = pe.Node(interface=fsl.ErodeImage(), name='fslmath_mag')
    preproc.connect(bet, 'out_file', fslmath_mag, 'in_file')
    preproc.connect(fslmath_mag, 'out_file', outputNode, 'fmapmagbrain')

    # calculate the absolute value of the eroded and masked magnitude
    # image
    fslmath_abs = pe.Node(interface=fsl.UnaryMaths(), name='fslmath_abs')
    fslmath_abs.inputs.operation = 'abs'
    preproc.connect(fslmath_mag, 'out_file', fslmath_abs, 'in_file')
    preproc.connect(fslmath_abs, 'out_file', outputNode, 'fmapmag_abs')

    # binarize the absolute value of the eroded and masked magnitude
    # image
    fslmath_bin = pe.Node(interface=fsl.UnaryMaths(), name='fslmath_bin')
    fslmath_bin.inputs.operation = 'bin'
    preproc.connect(fslmath_abs, 'out_file', fslmath_bin, 'in_file')
    preproc.connect(fslmath_bin, 'out_file', outputNode, 'fmapmag_bin')

    # take the absolute value of the fieldmap calculated in the prepare step
    fslmath_mask_1 = pe.Node(interface=fsl.UnaryMaths(), name='fslmath_mask_1')
    fslmath_mask_1.inputs.operation = 'abs'
    preproc.connect(prepare, 'out_fieldmap', fslmath_mask_1, 'in_file')
    preproc.connect(fslmath_mask_1, 'out_file', outputNode, 'fieldmapmask_abs')

    # binarize the absolute value of the fieldmap calculated in the prepare step
    fslmath_mask_2 = pe.Node(interface=fsl.UnaryMaths(), name='fslmath_mask_2')
    fslmath_mask_2.inputs.operation = 'bin'
    preproc.connect(fslmath_mask_1, 'out_file', fslmath_mask_2, 'in_file')
    preproc.connect(fslmath_mask_2, 'out_file', outputNode, 'fieldmapmask_bin')

    # multiply together the binarized magnitude and fieldmap images
    fslmath_mask = pe.Node(interface=fsl.BinaryMaths(), name='fslmath_mask')
    fslmath_mask.inputs.operation = 'mul'
    preproc.connect(fslmath_mask_2, 'out_file', fslmath_mask, 'in_file')
    preproc.connect(fslmath_bin, 'out_file', fslmath_mask, 'operand_file')
    preproc.connect(fslmath_mask, 'out_file', outputNode, 'fieldmapmask')

    # Note for the user. Ensure the phase image is within 0-4096 (upper
    # threshold is 90% of 4096), fsl_prepare_fieldmap will only work in the
    # case of the SIEMENS format. #Maybe we could use deltaTE also as an
    # option in the GUI.

    # fugue
    fugue1 = pe.Node(interface=fsl.FUGUE(), name='fugue1')
    fugue1.inputs.save_fmap = True
    fugue1.outputs.fmap_out_file = 'fmap_rads'
    preproc.connect(fslmath_mask, 'out_file', fugue1, 'mask_file')
    preproc.connect(inputNode_dwellT, 'dwellT', fugue1, 'dwell_time')
    preproc.connect(inputNode_dwell_asym_ratio, 'dwell_asym_ratio', fugue1,
                    'dwell_to_asym_ratio')
    preproc.connect(prepare, 'out_fieldmap', fugue1, 'fmap_in_file')
    preproc.connect(fugue1, 'fmap_out_file', outputNode, 'fmap_despiked')

    return preproc
def create_restingstatefmri_preprocessing_pipeline(in_fmri,
                                                   in_t1,
                                                   in_segmentation,
                                                   in_parcellation,
                                                   output_dir,
                                                   in_mag=None,
                                                   in_phase=None,
                                                   in_susceptibility_parameters=None,
                                                   name='restingstatefmri'):

    """Perform pre-processing steps for the resting state fMRI using AFNI

    Parameters
    ----------

    ::

      name : name of workflow (default: restingstatefmri)

    Inputs::

        in_fmri : functional runs into a single 4D image in NIFTI format
        in_t1 : The structural T1 image
        in_segmentation : The segmentation image containing 6 volumes (background, CSF, GM, WM, deep GM, brainstem),
        in the space of the fMRI image
        in_parcellation : The parcellation image coming out of the GIF parcellation algorithm
        output_dir : The output directory for the workflow
        in_mag : *OPT*, magnitude image to use for susceptibility correction (default: None)
        in_phase : *OPT*, phase image to use for susceptibility correction (default: None)
        in_susceptibility_parameters : *OPT*, susceptibility parameters
        (in a vector: read-out-time, echo time difference, phase encoding direction], default : None)
        name : *OPT*, name of the workflow (default : restingstatefmri)

    Outputs::


    Example
    -------

    >>> preproc = create_restingstatefmri_preprocessing_pipeline(in_fmri, in_t1, in_segmentation, in_parcellation, output_dir) # doctest: +SKIP
    >>> preproc.base_dir = '/tmp' # doctest: +SKIP
    >>> preproc.run() # doctest: +SKIP

    """

    workflow = pe.Workflow(name=name)
    workflow.base_output_dir = name

    # We need to create an input node for the workflow
    input_node = pe.Node(
        niu.IdentityInterface(
            fields=['in_fmri',
                    'in_t1',
                    'in_segmentation',
                    'in_parcellation']),
        name='input_node')
    input_node.inputs.in_fmri = in_fmri
    input_node.inputs.in_t1 = in_t1
    input_node.inputs.in_segmentation = in_segmentation
    input_node.inputs.in_parcellation = in_parcellation

    resting_state_preproc = pe.Node(interface=RestingStatefMRIPreprocess(),
                                    name='resting_state_preproc')

    workflow.connect(input_node, 'in_fmri', resting_state_preproc, 'in_fmri')
    workflow.connect(input_node, 'in_t1', resting_state_preproc, 'in_t1')
    workflow.connect(input_node, 'in_segmentation', resting_state_preproc, 'in_tissue_segmentation')
    workflow.connect(input_node, 'in_parcellation', resting_state_preproc, 'in_parcellation')
    # fMRI QC plot
    plotter = pe.Node(interface=FmriQcPlot(),
                      name='plotter')
    workflow.connect(input_node, 'in_fmri', plotter, 'in_raw_fmri')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_gm', plotter, 'in_raw_fmri_gm')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_wm', plotter, 'in_raw_fmri_wm')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_csf', plotter, 'in_raw_fmri_csf')
    workflow.connect(resting_state_preproc, 'out_mrp_file', plotter, 'in_mrp_file')
    workflow.connect(resting_state_preproc, 'out_spike_file', plotter, 'in_spike_file')
    workflow.connect(resting_state_preproc, 'out_rms_file', plotter, 'in_rms_file')
    # Output node
    output_node = pe.Node(interface=niu.IdentityInterface(fields=['out_corrected_fmri',
                                                                  'out_atlas_fmri',
                                                                  'out_fmri_to_t1_transformation',
                                                                  'out_raw_fmri_gm',
                                                                  'out_raw_fmri_wm',
                                                                  'out_raw_fmri_csf',
                                                                  'out_fmri_qc',
                                                                  'out_motioncorrected_file']),
                          name="output_node")
    workflow.connect(resting_state_preproc, 'out_corrected_fmri', output_node, 'out_corrected_fmri')
    workflow.connect(resting_state_preproc, 'out_atlas_fmri', output_node, 'out_atlas_fmri')
    workflow.connect(resting_state_preproc, 'out_fmri_to_t1_transformation', output_node,
                     'out_fmri_to_t1_transformation')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_gm', output_node, 'out_raw_fmri_gm')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_wm', output_node, 'out_raw_fmri_wm')
    workflow.connect(resting_state_preproc, 'out_raw_fmri_csf', output_node, 'out_raw_fmri_csf')
    workflow.connect(resting_state_preproc, 'out_motioncorrected_file', output_node, 'out_motioncorrected_file')
    workflow.connect(plotter, 'out_file', output_node, 'out_fmri_qc')

    ds = pe.Node(nio.DataSink(), name='ds')
    ds.inputs.base_directory = os.path.abspath(output_dir)
    ds.inputs.parameterization = False

    workflow.connect(output_node, 'out_fmri_to_t1_transformation', ds, '@fmri_to_t1_transformation')
    workflow.connect(output_node, 'out_atlas_fmri', ds, '@atlas_in_fmri')
    workflow.connect(output_node, 'out_raw_fmri_gm', ds, '@gm_in_fmri')
    workflow.connect(output_node, 'out_raw_fmri_wm', ds, '@wm_in_fmri')
    workflow.connect(output_node, 'out_raw_fmri_csf', ds, '@csf_in_fmri')
    workflow.connect(output_node, 'out_fmri_qc', ds, '@fmri_qc')

    if in_mag is None or in_phase is None or in_susceptibility_parameters is None:
        workflow.connect(output_node, 'out_motioncorrected_file', ds, '@motioncorrected_file')
        workflow.connect(output_node, 'out_corrected_fmri', ds, '@corrected_fmri')
    else:
        split_fmri = pe.Node(interface=fsl.Split(dimension='t'),
                             name='split_fmri')
        workflow.connect(output_node, 'out_motioncorrected_file', split_fmri, 'in_file')
        select_1st_fmri = pe.Node(interface=niu.Select(index=0),
                                  name='select_1st_fmri')
        workflow.connect(split_fmri, 'out_files', select_1st_fmri, 'inlist')
        binarise_parcellation = pe.Node(interface=fsl.UnaryMaths(operation='bin'),
                                        name='binarise_parcellation')
        workflow.connect(input_node, 'in_parcellation', binarise_parcellation, 'in_file')

        # Perform susceptibility correction, where we already have a mask in the b0 space
        susceptibility_correction = create_fieldmap_susceptibility_workflow('susceptibility_correction',
                                                                            reg_to_t1=True)
        susceptibility_correction.inputs.input_node.mag_image = os.path.abspath(in_mag)
        susceptibility_correction.inputs.input_node.phase_image = os.path.abspath(in_phase)
        susceptibility_correction.inputs.input_node.t1 = os.path.abspath(in_t1)
        susceptibility_correction.inputs.input_node.rot = in_susceptibility_parameters[0]
        susceptibility_correction.inputs.input_node.etd = in_susceptibility_parameters[1]
        susceptibility_correction.inputs.input_node.ped = in_susceptibility_parameters[2]
        workflow.connect(select_1st_fmri, 'out', susceptibility_correction, 'input_node.epi_image')
        workflow.connect(binarise_parcellation, 'out_file', susceptibility_correction, 'input_node.t1_mask')

        fmri_corrected_resample = pe.Node(interface=niftyreg.RegResample(inter_val='LIN'),
                                          name='fmri_corrected_resample')
        workflow.connect(output_node, 'out_corrected_fmri', fmri_corrected_resample, 'ref_file')
        workflow.connect(output_node, 'out_corrected_fmri', fmri_corrected_resample, 'flo_file')
        workflow.connect(susceptibility_correction.get_node('output_node'), 'out_field',
                         fmri_corrected_resample, 'trans_file')
        workflow.connect(fmri_corrected_resample, 'out_file', ds, '@corrected_fmri')
        fmri_motion_corrected_resample = pe.Node(interface=niftyreg.RegResample(inter_val='LIN'),
                                                 name='fmri_motion_corrected_resample')

        workflow.connect(output_node, 'out_motioncorrected_file', fmri_motion_corrected_resample, 'ref_file')
        workflow.connect(output_node, 'out_motioncorrected_file', fmri_motion_corrected_resample, 'flo_file')
        workflow.connect(susceptibility_correction.get_node('output_node'), 'out_field',
                         fmri_motion_corrected_resample, 'trans_file')
        workflow.connect(fmri_motion_corrected_resample, 'out_file', ds, '@motioncorrected_file')

    return workflow