def test_Segment_inputs(): input_map = dict(ignore_exception=dict(nohash=True, usedefault=True, ), paths=dict(), clean_masks=dict(field='output.cleanup', ), bias_fwhm=dict(field='opts.biasfwhm', ), mask_image=dict(field='opts.msk', ), bias_regularization=dict(field='opts.biasreg', ), warp_frequency_cutoff=dict(field='opts.warpco', ), affine_regularization=dict(field='opts.regtype', ), use_v8struct=dict(min_ver='8', usedefault=True, ), warping_regularization=dict(field='opts.warpreg', ), use_mcr=dict(), gm_output_type=dict(field='output.GM', ), tissue_prob_maps=dict(field='opts.tpm', ), sampling_distance=dict(field='opts.samp', ), matlab_cmd=dict(), gaussians_per_class=dict(field='opts.ngaus', ), mfile=dict(usedefault=True, ), save_bias_corrected=dict(field='output.biascor', ), data=dict(copyfile=False, mandatory=True, field='data', ), wm_output_type=dict(field='output.WM', ), csf_output_type=dict(field='output.CSF', ), ) inputs = Segment.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_Segment_inputs(): input_map = dict( affine_regularization=dict(field='opts.regtype', ), bias_fwhm=dict(field='opts.biasfwhm', ), bias_regularization=dict(field='opts.biasreg', ), clean_masks=dict(field='output.cleanup', ), csf_output_type=dict(field='output.CSF', ), data=dict( copyfile=False, field='data', mandatory=True, ), gaussians_per_class=dict(field='opts.ngaus', ), gm_output_type=dict(field='output.GM', ), ignore_exception=dict( nohash=True, usedefault=True, ), mask_image=dict(field='opts.msk', ), matlab_cmd=dict(), mfile=dict(usedefault=True, ), paths=dict(), sampling_distance=dict(field='opts.samp', ), save_bias_corrected=dict(field='output.biascor', ), tissue_prob_maps=dict(field='opts.tpm', ), use_mcr=dict(), use_v8struct=dict( min_ver='8', usedefault=True, ), warp_frequency_cutoff=dict(field='opts.warpco', ), warping_regularization=dict(field='opts.warpreg', ), wm_output_type=dict(field='output.WM', ), ) inputs = Segment.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_Segment_outputs(): output_map = dict(bias_corrected_image=dict(), native_csf_image=dict(), normalized_wm_image=dict(), modulated_wm_image=dict(), modulated_input_image=dict(new_name='bias_corrected_image', deprecated='0.10', ), native_wm_image=dict(), inverse_transformation_mat=dict(), transformation_mat=dict(), normalized_csf_image=dict(), modulated_gm_image=dict(), modulated_csf_image=dict(), native_gm_image=dict(), normalized_gm_image=dict(), ) outputs = Segment.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_Segment_outputs(): output_map = dict( bias_corrected_image=dict(), inverse_transformation_mat=dict(), modulated_csf_image=dict(), modulated_gm_image=dict(), modulated_input_image=dict( deprecated='0.10', new_name='bias_corrected_image', ), modulated_wm_image=dict(), native_csf_image=dict(), native_gm_image=dict(), native_wm_image=dict(), normalized_csf_image=dict(), normalized_gm_image=dict(), normalized_wm_image=dict(), transformation_mat=dict(), ) outputs = Segment.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value