prob_data[..., j + 1] += temp
        prob_data = prob_data / num
        prob_data[prob_data < thres] = 0
        mpm = np.argmax(prob_data, axis=3)
        for j in range(len(cls_list)):
            mpm[mpm == j + 1] = cls_list[j]

        ## save MPM file
        #mybase.save2nifti(mpm, header, os.path.join(data_dir, 'mpm.nii.gz'))

        pred_label = mpm * mask_data * test_data
        # compute Dice
        for label_idx in cls_list:
            P = pred_label == label_idx
            T = test_label == label_idx
            dice_val = mymath.dice_coef(T, P)
            print 'Dice for label %s: %f' % (label_idx, dice_val)
            if label_idx == 4:
                temp_ffa_dice.append(dice_val)
            else:
                temp_ofa_dice.append(dice_val)

        # compute consistency of peak location
        for label_idx in cls_list:
            P = pred_label == label_idx
            T = test_label == label_idx
            pred_zstat = P * zstat_data[..., i]
            true_zstat = T * zstat_data[..., i]
            if P.sum() and T.sum():
                if np.argmax(pred_zstat) == np.argmax(true_zstat):
                    c = 1
                prob_data[..., j+1] += temp
        prob_data = prob_data / num
        prob_data[prob_data<thres] = 0
        mpm = np.argmax(prob_data, axis=3)
        for j in range(len(cls_list)):
            mpm[mpm==j+1] = cls_list[j]

        ## save MPM file
        #mybase.save2nifti(mpm, header, os.path.join(data_dir, 'mpm.nii.gz'))

        pred_label = mpm * mask_data * test_data
        # compute Dice
        for label_idx in cls_list:
            P = pred_label == label_idx
            T = test_label == label_idx
            dice_val = mymath.dice_coef(T, P)
            print 'Dice for label %s: %f'%(label_idx, dice_val)
            if label_idx == 4:
                temp_ffa_dice.append(dice_val)
            else:
                temp_ofa_dice.append(dice_val)
       
        # compute consistency of peak location
        for label_idx in cls_list:
            P = pred_label == label_idx
            T = test_label == label_idx
            pred_zstat = P * zstat_data[..., i]
            true_zstat = T * zstat_data[..., i]
            if P.sum() and T.sum():
                if np.argmax(pred_zstat) == np.argmax(true_zstat):
                    c = 1
Esempio n. 3
0
pred_data = np.around(pred_data)

roi_label = [8, 10, 12]

for roi in roi_label:
    out_file = os.path.join(pred_dir, 'perf_' + str(roi) + '.txt')
    f = open(out_file, 'w')
    f.write('SID, peak, dice\n')

    for i in range(len(sessid)):
        tmp_pred = pred_data[..., i].copy()
        tmp_pred[tmp_pred!=roi] = 0
        tmp_pred[tmp_pred==roi] = 1
        tmp_label = label_data[..., i].copy()
        tmp_label[tmp_label!=roi] = 0
        tmp_label[tmp_label==roi] = 1
        pred_zstat = tmp_pred * zstat_data[..., i]
        true_zstat = tmp_label * zstat_data[..., i]
        if tmp_pred.sum() and tmp_label.sum():
            if np.argmax(pred_zstat) == np.argmax(true_zstat):
                c = 1
            else:
                c = 0
        elif tmp_pred.sum() or tmp_label.sum():
            c = 0
        else:
            c = 1
        dice = mymath.dice_coef(tmp_pred, tmp_label)
        f.write(','.join([sessid[i], str(c), str(dice)]) + '\n')

Esempio n. 4
0
pred_data = nib.load(pred_file).get_data()
pred_data = np.around(pred_data)

roi_label = [8, 10, 12]

for roi in roi_label:
    out_file = os.path.join(pred_dir, 'perf_' + str(roi) + '.txt')
    f = open(out_file, 'w')
    f.write('SID, peak, dice\n')

    for i in range(len(sessid)):
        tmp_pred = pred_data[..., i].copy()
        tmp_pred[tmp_pred != roi] = 0
        tmp_pred[tmp_pred == roi] = 1
        tmp_label = label_data[..., i].copy()
        tmp_label[tmp_label != roi] = 0
        tmp_label[tmp_label == roi] = 1
        pred_zstat = tmp_pred * zstat_data[..., i]
        true_zstat = tmp_label * zstat_data[..., i]
        if tmp_pred.sum() and tmp_label.sum():
            if np.argmax(pred_zstat) == np.argmax(true_zstat):
                c = 1
            else:
                c = 0
        elif tmp_pred.sum() or tmp_label.sum():
            c = 0
        else:
            c = 1
        dice = mymath.dice_coef(tmp_pred, tmp_label)
        f.write(','.join([sessid[i], str(c), str(dice)]) + '\n')
Esempio n. 5
0
            'lffa': 4,
            'rpcsts': 7,
            'lpcsts': 8,
            'rpsts': 9,
            'lpsts': 10,
            'rasts': 11,
            'lasts': 12}

for roi in roi_dict:
    roi_idx = roi_dict[roi]
    roi_dice = []

    roi_mask = parcel_data.copy()
    roi_mask[roi_mask!=roi_idx] = 0
    roi_mask[roi_mask==roi_idx] = 1
    label = label_data.copy()
    label[label!=roi_idx] = 0
    label[label==roi_idx] = 1

    for i in range(act_data.shape[3]):
        pred_roi = act_data[..., i] * roi_mask
        dice = mymath.dice_coef(pred_roi, label[..., i])
        roi_dice.append(dice)
    print 'Mean Dice - %s: %s'%(roi, np.array(roi_dice).mean())

    out_file = os.path.join(roi + '_dice_output.txt')
    f = open(out_file, 'w')
    for line in roi_dice:
        f.write(str(line) + '\n')

Esempio n. 6
0
def leave_one_out_test(sid_list,
                       atlas_num,
                       data_dir,
                       class_label,
                       forest_list,
                       classes_list,
                       spatial_ptn,
                       save_nifti=False,
                       sorted=True,
                       single_atlas=False):
    """
    Evaluate classifier performance with leave-one-out scheme.

    """
    # initial output dice value
    dice = {}
    for idx in class_label:
        dice[idx] = []

    for i in range(len(sid_list)):
        print 'Test subject %s' % (sid_list[i])
        test_data = get_subj_sample(sid_list[i], data_dir)
        # mask out voxels which are not activated significantly
        smp_mask = test_data[..., 0] >= 2.3
        #test_x = test_data[smp_mask, 0:4]
        test_x = test_data[smp_mask, 1:4]
        test_y = test_data[smp_mask, -1]

        # define similarity index
        similarity = []
        atlas_idx = []
        for j in range(len(sid_list)):
            if i == j:
                continue
            atlas_idx.append(j)
            #r = normalized_mutual_info_score(spatial_ptn[..., i],
            #                                 spatial_ptn[..., j])
            #r = mymath.mutual_information(spatial_ptn[..., i],
            #                              spatial_ptn[..., j])
            r = np.corrcoef(spatial_ptn[..., i], spatial_ptn[..., j])[0, 1]
            similarity.append(r)

        # sort the similarity
        sorted_sim_idx = np.argsort(similarity)[::-1]
        #print similarity
        #print sorted_sim_idx

        # label the activation voxels with atlas forests (AFs)
        tmp_dice = {}
        for idx in class_label:
            tmp_dice[idx] = []

        for num in atlas_num:
            print 'atlas number %s' % (num)
            if sorted:
                if not single_atlas:
                    selected_atlas = sorted_sim_idx[0:num]
                else:
                    selected_atlas = sorted_sim_idx[(num - 1):num]
            else:
                selected_atlas = np.random.choice(len(sorted_sim_idx),
                                                  num,
                                                  replace=False)
            pred_prob = None
            for idx in selected_atlas:
                clf = forest_list[atlas_idx[idx]]
                prob = clf.predict_proba(test_x)
                std_prob = np.zeros((prob.shape[0], len(class_label) + 1))
                # TODO: construct a std prob table
                for cls_idx in range(prob.shape[1]):
                    if classes_list[atlas_idx[idx]][cls_idx] == 0:
                        std_prob[..., 0] = prob[..., cls_idx]
                    else:
                        tmp_idx = class_label.index(
                            classes_list[atlas_idx[idx]][cls_idx])
                        std_prob[..., tmp_idx + 1] = prob[..., cls_idx]
                new_prob = np.zeros(std_prob.shape)
                new_prob[range(new_prob.shape[0]),
                         np.argmax(std_prob, axis=1)] = 1
                # optional: modulate prediction probability with similarity
                #new_prob = new_prob * similarity[clf_idx]
                if not isinstance(pred_prob, np.ndarray):
                    pred_prob = new_prob
                else:
                    pred_prob += new_prob
            #print pred_prob.shape
            tmp_pred_y = np.argmax(pred_prob, axis=1)
            pred_y = np.zeros(tmp_pred_y.shape)
            for k in range(1, pred_prob.shape[1]):
                pred_y[tmp_pred_y == k] = class_label[k - 1]

            for label_idx in class_label:
                P = pred_y == label_idx
                T = test_y == label_idx
                dice_val = mymath.dice_coef(T, P)
                print 'Dice for label %s: %f' % (label_idx, dice_val)
                tmp_dice[label_idx].append(dice_val)

            # save predicted label as a nifti file
            if save_nifti:
                # predicted nifti directory
                pred_dir = os.path.join(data_dir, str(num) + '_atlas_pred')
                if not os.path.exists(pred_dir):
                    os.system('mkdir ' + pred_dir)
                fsl_dir = os.getenv('FSL_DIR')
                img = nib.load(
                    os.path.join(fsl_dir, 'data', 'standard',
                                 'MNI152_T1_2mm_brain.nii.gz'))
                # save predicted label
                header = img.get_header()
                #coords = test_x[..., 1:4]
                coords = test_x
                pred_data = arlib.write2array(coords, pred_y)
                pred_data = np.around(pred_data)
                out_file = os.path.join(pred_dir, sid_list[i] + '_pred.nii.gz')
                mybase.save2nifti(pred_data, header, out_file)

        for idx in class_label:
            dice[idx].append(tmp_dice[idx])

    for idx in class_label:
        print 'Mean Dice for label %s: %s' % (idx, np.mean(dice[idx],
                                                           axis=0)[0])
    return dice