Esempio n. 1
0
def main(opts):

    #instantiate slc object from NISAR SLC class
    slc = SLC(hdf5file=opts.product)

    # extract orbit
    orbit = slc.getOrbit()

    # extract the radar grid parameters
    radarGrid = slc.getRadarGrid()

    # construct ellipsoid which is by default WGS84
    ellipsoid = isce3.core.ellipsoid()

    # Create geo2rdr instance
    geo2rdrObj = isce3.geometry.geo2rdr(radarGrid=radarGrid,
                                        orbit=orbit,
                                        ellipsoid=ellipsoid)

    # Read topo multiband raster
    topoRaster = isce3.io.raster(
        filename=os.path.join(opts.topodir, 'topo.vrt'))

    # Init output directory
    if not os.path.isdir(opts.outdir):
        os.mkdir(opts.outdir)

    # Run geo2rdr
    geo2rdrObj.geo2rdr(topoRaster,
                       outputDir=opts.outdir,
                       azshift=opts.azoff,
                       rgshift=opts.rgoff)
Esempio n. 2
0
def test_run():
    # load parameters shared across all test runs
    # init geocode object and populate members
    rslc = SLC(hdf5file=os.path.join(iscetest.data, "envisat.h5"))
    orbit = rslc.getOrbit()
    native_doppler = rslc.getDopplerCentroid()
    native_doppler.bounds_error = False
    grid_doppler = native_doppler
    threshold_geo2rdr = 1e-8
    numiter_geo2rdr = 25
    delta_range = 1e-6
    epsg = 4326

    # get radar grid from HDF5
    radar_grid = isce3.product.RadarGridParameters(
        os.path.join(iscetest.data, "envisat.h5"))
    radar_grid = radar_grid[::10, ::10]

    heights = [0.0, 1000.0]

    output_h5 = 'envisat_geolocation_cube.h5'
    fid = h5py.File(output_h5, 'w')

    cube_group_name = '/science/LSAR/SLC/metadata/radarGrid'

    add_geolocation_grid_cubes_to_hdf5(fid, cube_group_name, radar_grid,
                                       heights, orbit, native_doppler,
                                       grid_doppler, epsg, threshold_geo2rdr,
                                       numiter_geo2rdr, delta_range)

    print('saved file:', output_h5)
Esempio n. 3
0
def main(opts):

    #instantiate slc object from NISAR SLC class
    slc = SLC(hdf5file=opts.product)

    # extract orbit
    orbit = slc.getOrbit()

    # extract the radar grid parameters
    radarGrid = slc.getRadarGrid()

    # construct ellipsoid which is by default WGS84
    ellipsoid = isce3.core.ellipsoid()

    rdr2geo = isce3.geometry.rdr2geo(radarGrid=radarGrid,
                                     orbit=orbit,
                                     ellipsoid=ellipsoid,
                                     computeMask=opts.mask)

    # Read DEM raster
    demRaster = isce3.io.raster(filename=opts.dem)

    # Init output directory
    if not os.path.isdir(opts.outdir):
        os.mkdir(opts.outdir)

    # Run rdr2geo
    rdr2geo.topo(demRaster, outputDir=opts.outdir)

    return 0
Esempio n. 4
0
def test_run_raster_layers():
    '''
    check if topo runs
    '''
    # prepare Rdr2Geo init params
    h5_path = os.path.join(iscetest.data, "envisat.h5")

    radargrid = isce3.product.RadarGridParameters(h5_path)

    slc = SLC(hdf5file=h5_path)
    orbit = slc.getOrbit()
    doppler = slc.getDopplerCentroid()

    ellipsoid = isce3.core.Ellipsoid()

    # init Rdr2Geo class
    rdr2geo_obj = isce3.geometry.Rdr2Geo(radargrid, orbit, ellipsoid, doppler)

    # load test DEM
    dem_raster = isce3.io.Raster(
        os.path.join(iscetest.data, "srtm_cropped.tif"))
    x_raster = isce3.io.Raster("x.rdr", radargrid.width, radargrid.length, 1,
                               gdal.GDT_Float64, 'ENVI')
    y_raster = isce3.io.Raster("y.rdr", radargrid.width, radargrid.length, 1,
                               gdal.GDT_Float64, 'ENVI')
    height_raster = isce3.io.Raster("z.rdr", radargrid.width, radargrid.length,
                                    1, gdal.GDT_Float64, 'ENVI')
    incidence_angle_raster = isce3.io.Raster("inc.rdr", radargrid.width,
                                             radargrid.length, 1,
                                             gdal.GDT_Float32, 'ENVI')
    heading_angle_raster = isce3.io.Raster("hgd.rdr", radargrid.width,
                                           radargrid.length, 1,
                                           gdal.GDT_Float32, 'ENVI')
    local_incidence_angle_raster = isce3.io.Raster("localInc.rdr",
                                                   radargrid.width,
                                                   radargrid.length, 1,
                                                   gdal.GDT_Float32, 'ENVI')
    local_Psi_raster = isce3.io.Raster("localPsi.rdr", radargrid.width,
                                       radargrid.length, 1, gdal.GDT_Float32,
                                       'ENVI')
    simulated_amplitude_raster = isce3.io.Raster("simamp.rdr", radargrid.width,
                                                 radargrid.length, 1,
                                                 gdal.GDT_Float32, 'ENVI')
    layover_shadow_raster = isce3.io.Raster("layoverShadowMask.rdr",
                                            radargrid.width, radargrid.length,
                                            1, gdal.GDT_Float32, 'ENVI')

    # run
    rdr2geo_obj.topo(dem_raster, x_raster, y_raster, height_raster,
                     incidence_angle_raster, heading_angle_raster,
                     local_incidence_angle_raster, local_Psi_raster,
                     simulated_amplitude_raster, layover_shadow_raster)

    topo_raster = isce3.io.Raster(
        "topo_layers.vrt",
        raster_list=[
            x_raster, y_raster, height_raster, incidence_angle_raster,
            heading_angle_raster, local_incidence_angle_raster,
            local_Psi_raster, simulated_amplitude_raster
        ])
Esempio n. 5
0
def test_point():
    # Subset of tests/cxx/isce3/geometry/geometry/geometry.cpp
    fn = os.path.join(iscetest.data, "envisat.h5")
    slc = SLC(hdf5file=fn)
    orbit = slc.getOrbit()
    subband = "A"
    doplut = slc.getDopplerCentroid(frequency=subband)
    grid = slc.getRadarGrid(frequency=subband)

    # First row of input_data.txt
    dt = isce3.core.DateTime("2003-02-26T17:55:22.976222")
    r = 826988.6900674499
    h = 1777.

    dem = isce3.geometry.DEMInterpolator(h)
    t = (dt - orbit.reference_epoch).total_seconds()
    dop = doplut.eval(t, r)
    wvl = grid.wavelength

    # native doppler, expect first row of output_data.txt
    llh = isce3.geometry.rdr2geo(t, r, orbit, grid.lookside, dop, wvl, dem)
    assert np.isclose(np.degrees(llh[0]), -115.44101120961082)
    assert np.isclose(np.degrees(llh[1]), 35.28794014757191)
    assert np.isclose(llh[2], 1777.)

    # zero doppler, expect first row of output_data_zerodop.txt
    llh = isce3.geometry.rdr2geo(t, r, orbit, grid.lookside, 0.0, dem=dem)
    assert np.isclose(np.degrees(llh[0]), -115.43883834023249)
    assert np.isclose(np.degrees(llh[1]), 35.29610867314526)
    assert np.isclose(llh[2], 1776.9999999993)
Esempio n. 6
0
def test_run():
    '''
    check if resamp runs
    '''
    # init params
    h5_path = os.path.join(iscetest.data, "envisat.h5")
    grid = isce3.product.RadarGridParameters(h5_path)
    slc = SLC(hdf5file=h5_path)

    # init resamp obj
    resamp = isce3.image.ResampSlc(grid, slc.getDopplerCentroid())
    resamp.lines_per_tile = 249

    # prepare rasters
    h5_ds = f'//science/LSAR/SLC/swaths/frequencyA/HH'
    raster_ref = f'HDF5:{h5_path}:{h5_ds}'
    input_slc = isce3.io.Raster(raster_ref)

    az_off_raster = isce3.io.Raster(
        os.path.join(iscetest.data, "offsets/azimuth.off"))
    rg_off_raster = isce3.io.Raster(
        os.path.join(iscetest.data, "offsets/range.off"))

    output_slc = isce3.io.Raster('warped.slc', rg_off_raster.width,
                                 rg_off_raster.length, rg_off_raster.num_bands,
                                 gdal.GDT_CFloat32, 'ENVI')

    # run resamp
    resamp.resamp(input_slc, output_slc, rg_off_raster, az_off_raster)
Esempio n. 7
0
def test_run():
    '''
    run geocodeSlc bindings with same parameters as C++ test to make sure it does not crash
    '''
    # load h5 for doppler and orbit
    rslc = SLC(hdf5file=os.path.join(iscetest.data, "envisat.h5"))

    # define geogrid
    geogrid = isce.product.GeoGridParameters(start_x=-115.65,
                                             start_y=34.84,
                                             spacing_x=0.0002,
                                             spacing_y=-8.0e-5,
                                             width=500,
                                             length=500,
                                             epsg=4326)

    # define geotransform
    geotrans = [
        geogrid.start_x, geogrid.spacing_x, 0.0, geogrid.start_y, 0.0,
        geogrid.spacing_y
    ]

    img_doppler = rslc.getDopplerCentroid()
    native_doppler = isce.core.LUT2d(img_doppler.x_start, img_doppler.y_start,
                                     img_doppler.x_spacing,
                                     img_doppler.y_spacing,
                                     np.zeros((geogrid.length, geogrid.width)))

    dem_raster = isce.io.Raster(
        os.path.join(iscetest.data, "geocode/zeroHeightDEM.geo"))

    radargrid = isce.product.RadarGridParameters(
        os.path.join(iscetest.data, "envisat.h5"))

    # geocode same 2 rasters as C++ version
    for xy in ['x', 'y']:
        out_raster = isce.io.Raster(f"{xy}.geo", geogrid.width, geogrid.length,
                                    1, gdal.GDT_CFloat32, "ENVI")

        in_raster = isce.io.Raster(
            os.path.join(iscetest.data, f"geocodeslc/{xy}.slc"))

        isce.geocode.geocode_slc(output_raster=out_raster,
                                 input_raster=in_raster,
                                 dem_raster=dem_raster,
                                 radargrid=radargrid,
                                 geogrid=geogrid,
                                 orbit=rslc.getOrbit(),
                                 native_doppler=native_doppler,
                                 image_grid_doppler=img_doppler,
                                 ellipsoid=isce.core.Ellipsoid(),
                                 threshold_geo2rdr=1.0e-9,
                                 numiter_geo2rdr=25,
                                 lines_per_block=1000,
                                 dem_block_margin=0.1,
                                 flatten=False)

        out_raster.set_geotransform(geotrans)
Esempio n. 8
0
def test_cuda_geocode():
    rslc = SLC(hdf5file=os.path.join(iscetest.data, "envisat.h5"))

    dem_raster = isce3.io.Raster(
        os.path.join(iscetest.data, "geocode/zeroHeightDEM.geo"))

    dem_margin = 0.1

    # define geogrid
    epsg = 4326
    geogrid = isce3.product.GeoGridParameters(start_x=-115.65,
                                              start_y=34.84,
                                              spacing_x=0.0002,
                                              spacing_y=-8.0e-5,
                                              width=500,
                                              length=500,
                                              epsg=epsg)

    geotrans = [
        geogrid.start_x, geogrid.spacing_x, 0.0, geogrid.start_y, 0.0,
        geogrid.spacing_y
    ]

    # init RadarGeometry, orbit, and doppler from RSLC
    radargrid = isce3.product.RadarGridParameters(
        os.path.join(iscetest.data, "envisat.h5"))
    orbit = rslc.getOrbit()
    doppler = rslc.getDopplerCentroid()
    rdr_geometry = isce3.container.RadarGeometry(radargrid, orbit, doppler)

    # set interp method
    interp_method = isce3.core.DataInterpMethod.BILINEAR

    # init CUDA geocode obj
    for xy, suffix in itertools.product(['x', 'y'], ['', '_blocked']):

        lines_per_block = 126 if suffix else 1000

        cu_geocode = isce3.cuda.geocode.Geocode(geogrid, rdr_geometry,
                                                dem_raster, dem_margin,
                                                lines_per_block, interp_method)

        output_raster = isce3.io.Raster(f"{xy}{suffix}.geo", geogrid.width,
                                        geogrid.length, 1, gdal.GDT_CFloat32,
                                        "ENVI")

        input_raster = isce3.io.Raster(
            os.path.join(iscetest.data, f"geocodeslc/{xy}.slc"))

        for i in range(cu_geocode.n_blocks):
            cu_geocode.set_block_radar_coord_grid(i)

            cu_geocode.geocode_raster_block(output_raster, input_raster)

        output_raster.set_geotransform(geotrans)
Esempio n. 9
0
def main(opts):
    """
    crossmul
    """
    # prepare input rasters
    masterSlc = SLC(hdf5file=opts.master)
    masterSlcDataset = masterSlc.getSlcDataset(opts.frequency,
                                               opts.polarization)
    masterSlcRaster = Raster('', h5=masterSlcDataset)
    slaveSlc = SLC(hdf5file=opts.slave)
    slaveSlcDataset = slaveSlc.getSlcDataset(opts.frequency, opts.polarization)
    slaveSlcRaster = Raster('', h5=slaveSlcDataset)

    # prepare mulitlooked interferogram dimensions
    masterGrid = masterSlc.getRadarGrid(opts.frequency)
    length = int(masterGrid.length / opts.alks)
    width = int(masterGrid.width / opts.rlks)

    # init output directory(s)
    initDir(opts.intPathAndPrefix)
    initDir(opts.cohPathAndPrefix)

    # prepare output rasters
    driver = gdal.GetDriverByName('ISCE')
    igramDataset = driver.Create(opts.intPathAndPrefix, width, length, 1,
                                 gdal.GDT_CFloat32)
    igramRaster = Raster('', dataset=igramDataset)
    cohDataset = driver.Create(opts.cohPathAndPrefix, width, length, 1,
                               gdal.GDT_Float32)
    cohRaster = Raster('', dataset=cohDataset)

    # prepare optional rasters
    if opts.rgoff:
        rgOffRaster = Raster(opts.rgoff)
    else:
        rgOffRaster = None

    if opts.azband:
        dopMaster = masterSlc.getDopplerCentroid()
        dopSlave = slaveSlc.getDopplerCentroid()
        prf = dopMaster.getRadarGrid(opts.frequency).prf
        azimuthBandwidth = opts.azband
    else:
        dopMaster = dopSlave = None
        prf = azimuthBandwidth = 0.0

    crossmul = Crossmul()
    crossmul.crossmul(masterSlcRaster,
                      slaveSlcRaster,
                      igramRaster,
                      cohRaster,
                      rngOffset=rgOffRaster,
                      refDoppler=dopMaster,
                      secDoppler=dopSlave,
                      rangeLooks=opts.rlks,
                      azimuthLooks=opts.alks,
                      prf=prf,
                      azimuthBandwidth=azimuthBandwidth)
Esempio n. 10
0
def test_run():
    '''
    check if geo2rdr runs
    '''
    # prepare Geo2Rdr init params
    h5_path = os.path.join(iscetest.data, "envisat.h5")

    radargrid = isce.product.RadarGridParameters(h5_path)

    slc = SLC(hdf5file=h5_path)
    orbit = slc.getOrbit()
    doppler = slc.getDopplerCentroid()

    ellipsoid = isce.core.Ellipsoid()

    # require geolocation accurate to one millionth of a pixel.
    tol_pixels = 1e-6
    tol_seconds = tol_pixels / radargrid.prf

    # init Geo2Rdr class
    geo2rdr_obj = isce.cuda.geometry.Geo2Rdr(radargrid,
                                             orbit,
                                             ellipsoid,
                                             doppler,
                                             threshold=tol_seconds,
                                             numiter=50)

    # load rdr2geo unit test output
    rdr2geo_raster = isce.io.Raster("topo.vrt")

    # run
    geo2rdr_obj.geo2rdr(rdr2geo_raster, ".")

    # list of test outputs
    test_outputs = ["range.off", "azimuth.off"]

    # check each generated raster
    for test_output in test_outputs:
        # load dataset and get array
        test_ds = gdal.Open(test_output, gdal.GA_ReadOnly)
        test_arr = test_ds.GetRasterBand(1).ReadAsArray()

        # mask bad values
        test_arr = np.ma.masked_array(test_arr, mask=np.abs(test_arr) > 999.0)

        # compute max error (in pixels)
        test_err = np.max(np.abs(test_arr))

        # Error may slightly exceed tolerance since Newton step size isn't a
        # perfect estimate of the error in the solution.
        assert (test_err <
                2 * tol_pixels), f"{test_output} accumulated error fail"
Esempio n. 11
0
def test_run():
    # load parameters shared across all test runs
    # init geocode object and populate members
    rslc = SLC(hdf5file=os.path.join(iscetest.data, "envisat.h5"))
    geo_obj = isce.geocode.GeocodeFloat64()
    geo_obj.orbit = rslc.getOrbit()
    geo_obj.doppler = rslc.getDopplerCentroid()
    geo_obj.ellipsoid = isce.core.Ellipsoid()
    geo_obj.threshold_geo2rdr = 1e-9
    geo_obj.numiter_geo2rdr = 25
    geo_obj.lines_per_block = 1000
    geo_obj.dem_block_margin = 1e-1
    geo_obj.radar_block_margin = 10
    geo_obj.data_interpolator = 'biquintic'

    # prepare geogrid
    geogrid_start_x = -115.6
    geogrid_start_y = 34.832
    reduction_factor = 10
    geogrid_spacingX = reduction_factor * 0.0002
    geogrid_spacingY = reduction_factor * -8.0e-5
    geo_grid_length = int(380 / reduction_factor)
    geo_grid_width = int(400 / reduction_factor)
    epsgcode = 4326
    geo_obj.geogrid(geogrid_start_x, geogrid_start_y, geogrid_spacingX,
                   geogrid_spacingY, geo_grid_width, geo_grid_length, epsgcode)

    # get radar grid from HDF5
    radar_grid = isce.product.RadarGridParameters(os.path.join(iscetest.data, "envisat.h5"))

    # load test DEM
    dem_raster = isce.io.Raster(os.path.join(iscetest.data, "geocode/zeroHeightDEM.geo"))

    # iterate thru axis
    for axis in input_axis:
        # load axis input raster
        input_raster = isce.io.Raster(os.path.join(iscetest.data, f"geocode/{axis}.rdr"))

        #  iterate thru geocode modes
        for key, value in geocode_modes.items():
            # prepare output raster
            output_path = f"{axis}_{key}.geo"
            output_raster = isce.io.Raster(output_path,
                    geo_grid_width, geo_grid_length, 1,
                    gdal.GDT_Float64, "ENVI")

            # geocode based on axis and mode
            geo_obj.geocode(radar_grid,
                    input_raster,
                    output_raster,
                    dem_raster,
                    value)
Esempio n. 12
0
def common_crossmul_obj():
    '''
    instantiate and return common crossmul object for both run tests
    '''
    # make SLC object and extract parameters
    slc_obj = SLC(hdf5file=os.path.join(iscetest.data, 'envisat.h5'))
    dopp = isce.core.avg_lut2d_to_lut1d(slc_obj.getDopplerCentroid())
    prf = slc_obj.getRadarGrid().prf

    crossmul = isce.signal.Crossmul()
    crossmul.set_dopplers(dopp, dopp)
    crossmul.set_az_filter(prf, 2000.0, 0.25)

    return crossmul
Esempio n. 13
0
def get_geo_polygon(ref_slc, min_height=-500.,
                    max_height=9000., pts_per_edge=5):
    """Create polygon (EPSG:4326) using RSLC radar grid and orbits

    Parameters:
    -----------
    ref_slc: str
        Path to RSLC product to stage the DEM for
    min_height: float
        Global minimum height (in m) for DEM interpolator
    max_height: float
        Global maximum height (in m) for DEM interpolator
    pts_per_edge: float
        Number of points per edge for min/max bounding box computation

    Returns:
    -------
    poly: shapely.Geometry.Polygon
        Bounding polygon corresponding to RSLC perimeter on the ground
    """
    from isce3.core import LUT2d
    from isce3.geometry import DEMInterpolator, get_geo_perimeter_wkt
    from nisar.products.readers import SLC

    # Prepare SLC dataset input
    productSlc = SLC(hdf5file=ref_slc)

    # Extract orbits, radar grid, and doppler for frequency A
    orbit = productSlc.getOrbit()
    radar_grid = productSlc.getRadarGrid(frequency='A')
    doppler = LUT2d()

    # Get min and max global height DEM interpolators
    dem_min = DEMInterpolator(height=min_height)
    dem_max = DEMInterpolator(height=max_height)

    # Get min and max bounding boxes
    box_min = get_geo_perimeter_wkt(radar_grid, orbit, doppler,
                                    dem_min, pts_per_edge)
    box_max = get_geo_perimeter_wkt(radar_grid, orbit, doppler,
                                    dem_max, pts_per_edge)

    # Determine minimum and maximum polygons
    poly_min = shapely.wkt.loads(box_min)
    poly_max = shapely.wkt.loads(box_max)

    # Get polygon from intersection of poly_min and poly_max
    poly = poly_min | poly_max

    return poly
Esempio n. 14
0
def add_radar_grid_cube(cfg, freq, radar_grid, orbit, dst_h5):
    ''' Write radar grid cube to HDF5

    Parameters
    ----------
    cfg : dict
        Dictionary containing run configuration
    freq : str
        Frequency in HDF5 to add cube to
    radar_grid : isce3.product.radar_grid
        Radar grid of current frequency of datasets other than offset and shadow
        layover datasets
    orbit : isce3.core.orbit
        Orbit object of current SLC
    dst_h5: str
        Path to output GUNW HDF5
    '''
    radar_grid_cubes_geogrid = cfg['processing']['radar_grid_cubes']['geogrid']
    radar_grid_cubes_heights = cfg['processing']['radar_grid_cubes']['heights']
    threshold_geo2rdr = cfg["processing"]["geo2rdr"]["threshold"]
    iteration_geo2rdr = cfg["processing"]["geo2rdr"]["maxiter"]

    ref_hdf5 = cfg["input_file_group"]["input_file_path"]
    slc = SLC(hdf5file=ref_hdf5)

    # get doppler centroid
    cube_geogrid_param = isce3.product.GeoGridParameters(
        start_x=radar_grid_cubes_geogrid.start_x,
        start_y=radar_grid_cubes_geogrid.start_y,
        spacing_x=radar_grid_cubes_geogrid.spacing_x,
        spacing_y=radar_grid_cubes_geogrid.spacing_y,
        width=int(radar_grid_cubes_geogrid.width),
        length=int(radar_grid_cubes_geogrid.length),
        epsg=radar_grid_cubes_geogrid.epsg)

    cube_group_path = '/science/LSAR/GUNW/metadata/radarGrid'

    native_doppler = slc.getDopplerCentroid(frequency=freq)
    grid_zero_doppler = isce3.core.LUT2d()
    '''
    The native-Doppler LUT bounds error is turned off to
    computer cubes values outside radar-grid boundaries
    '''
    native_doppler.bounds_error = False
    add_radar_grid_cubes_to_hdf5(dst_h5, cube_group_path,
                                 cube_geogrid_param, radar_grid_cubes_heights,
                                 radar_grid, orbit, native_doppler,
                                 grid_zero_doppler, threshold_geo2rdr,
                                 iteration_geo2rdr)
Esempio n. 15
0
    def prep_frequency_and_polarizations(self):
        '''
        check frequency and polarizations and fix as needed
        '''
        error_channel = journal.error(
            'RunConfig.prep_frequency_and_polarizations')
        input_path = self.cfg['input_file_group']['input_file_path']
        freq_pols = self.cfg['processing']['input_subset'][
            'list_of_frequencies']

        slc = SLC(hdf5file=input_path)

        for freq in freq_pols.keys():
            if freq not in slc.frequencies:
                err_str = f"Frequency {freq} invalid; not found in source frequencies."
                error_channel.log(err_str)
                raise ValueError(err_str)

            # first check polarizations from source hdf5
            rslc_pols = slc.polarizations[freq]
            # use all RSLC polarizations if None provided
            if freq_pols[freq] is None:
                freq_pols[freq] = rslc_pols
                continue

            # use polarizations provided by user
            # check if user provided polarizations match RSLC ones
            for usr_pol in freq_pols[freq]:
                if usr_pol not in rslc_pols:
                    err_str = f"{usr_pol} invalid; not found in source polarizations."
                    error_channel.log(err_str)
                    raise ValueError(err_str)
Esempio n. 16
0
def determine_perimeter(opts):
    """
     Determine perimeter for DEM staging
    """
    from nisar.products.readers import SLC
    from isce3.geometry import deminterpolator
    from isce3.geometry import getGeoPerimeter
    from isce3.core import projection

    if opts.bbox is not None:
        print('Determine perimeter from bounding box')
        lat = opts.bbox[0:2]
        lon = opts.bbox[2:4]
        ring = LinearRing([(lon[0], lat[0]), (lon[0], lat[1]),
                           (lon[1], lat[1]), (lon[1], lat[0])])
    else:
        print('Determine perimeter from SLC radar grid')

    # Prepare SLC dataset input
    productSlc = SLC(hdf5file=opts.product)

    # Extract orbits and radar Grid parameters
    orbit = productSlc.getOrbit()
    radarGrid = productSlc.getRadarGrid()

    # Minimum and Maximum global heights
    dem_min = deminterpolator(height=-500.)
    dem_max = deminterpolator(height=9000.)

    # Get Minimum and Maximum bounding boxes
    epsg = projection(epsg=4326)
    box_min = getGeoPerimeter(radarGrid,
                              orbit,
                              epsg,
                              dem=dem_min,
                              pointsPerEdge=5)
    box_max = getGeoPerimeter(radarGrid,
                              orbit,
                              epsg,
                              dem=dem_max,
                              pointsPerEdge=5)

    dummy = json.loads(box_min)['coordinates'] + \
        json.loads(box_max)['coordinates']
    ring = LinearRing(dummy)

    return ring
Esempio n. 17
0
def test_point():
    h5_path = os.path.join(iscetest.data, "envisat.h5")

    radargrid = isce3.product.RadarGridParameters(h5_path)

    slc = SLC(hdf5file=h5_path)
    orbit = slc.getOrbit()
    doppler = slc.getDopplerCentroid()

    ellipsoid = isce3.core.Ellipsoid()

    llh = np.array([
        np.deg2rad(-115.72466801139711),
        np.deg2rad(34.65846532785868), 1772.0
    ])

    # run with native doppler
    aztime, slant_range = isce3.geometry.geo2rdr(llh,
                                                 ellipsoid,
                                                 orbit,
                                                 doppler,
                                                 radargrid.wavelength,
                                                 radargrid.lookside,
                                                 threshold=1.0e-10,
                                                 maxiter=50,
                                                 delta_range=10.0)

    azdate = orbit.reference_epoch + isce3.core.TimeDelta(aztime)
    assert azdate.isoformat() == "2003-02-26T17:55:33.993088889"
    npt.assert_almost_equal(slant_range, 830450.1859446081, decimal=6)

    # run again with zero doppler
    doppler = isce3.core.LUT2d()

    aztime, slant_range = isce3.geometry.geo2rdr(llh,
                                                 ellipsoid,
                                                 orbit,
                                                 doppler,
                                                 radargrid.wavelength,
                                                 radargrid.lookside,
                                                 threshold=1.0e-10,
                                                 maxiter=50,
                                                 delta_range=10.0)

    azdate = orbit.reference_epoch + isce3.core.TimeDelta(aztime)
    assert azdate.isoformat() == "2003-02-26T17:55:34.122893704"
    npt.assert_almost_equal(slant_range, 830449.6727720434, decimal=6)
Esempio n. 18
0
def main(opts):

    #instantiate slc object from NISAR SLC class
    slc = SLC(hdf5file=opts.product)

    # extract orbit
    orbit = slc.getOrbit()

    # extract the radar grid parameters
    radarGrid = slc.getRadarGrid()

    # construct ellipsoid which is by default WGS84
    ellipsoid = isce3.core.ellipsoid()

    # get doppler centroid
    doppler = slc.getDopplerCentroid()

    # instantiate geo2rdr object based on user input
    if 'cuda' not in dir(isce3) and opts.gpu:
        warnings.warn('CUDA geo2rdr not available. Switching to CPU geo2rdr')
        opts.gpu = False

    if opts.gpu:
        geo2rdrObj = isce3.cuda.geometry.geo2rdr(radarGrid=radarGrid,
                                                 orbit=orbit,
                                                 ellipsoid=ellipsoid,
                                                 doppler=doppler,
                                                 threshold=1e-9)
    else:
        geo2rdrObj = isce3.geometry.geo2rdr(radarGrid=radarGrid,
                                            orbit=orbit,
                                            ellipsoid=ellipsoid,
                                            doppler=doppler,
                                            threshold=1e-9)

    # Read topo multiband raster
    topoRaster = isce3.io.raster(filename=opts.topopath)

    # Init output directory
    os.makedirs(opts.outdir, exist_ok=True)

    # Run geo2rdr
    geo2rdrObj.geo2rdr(topoRaster,
                       outputDir=opts.outdir,
                       azshift=opts.azoff,
                       rgshift=opts.rgoff)
Esempio n. 19
0
def main(opts):

    #instantiate slc object from NISAR SLC class
    slc = SLC(hdf5file=opts.product)

    # extract orbit
    orbit = slc.getOrbit()

    # extract the radar grid parameters
    radarGrid = slc.getRadarGrid()

    # construct ellipsoid which is by default WGS84
    ellipsoid = isce3.core.ellipsoid()

    # get doppler centroid
    doppler = slc.getDopplerCentroid()

    # instantiate rdr2geo object based on user input
    if 'cuda' not in dir(isce3) and opts.gpu:
        warnings.warn('CUDA rdr2geo not available. Switching to CPU rdr2geo')
        opts.gpu = False

    if opts.gpu:
        rdr2geo = isce3.cuda.geometry.rdr2geo(radarGrid=radarGrid,
                                              orbit=orbit,
                                              ellipsoid=ellipsoid,
                                              computeMask=opts.mask,
                                              doppler=doppler)
    else:
        rdr2geo = isce3.geometry.rdr2geo(radarGrid=radarGrid,
                                         orbit=orbit,
                                         ellipsoid=ellipsoid,
                                         computeMask=opts.mask,
                                         doppler=doppler)

    # Read DEM raster
    demRaster = isce3.io.raster(filename=opts.dem)

    # Init output directory
    os.makedirs(opts.outdir, exist_ok=True)

    # Run rdr2geo
    rdr2geo.topo(demRaster, outputDir=opts.outdir)

    return 0
Esempio n. 20
0
def main(opts):
    """
    resample SLC
    """

    # prep SLC dataset input
    productSlc = SLC(hdf5file=opts.product)

    # get grids needed for resamp object instantiation
    productGrid = productSlc.getRadarGrid(opts.frequency)

    # instantiate resamp object
    resamp = ResampSlc(productGrid, productSlc.getDopplerCentroid(),
                       productGrid.wavelength)

    # set number of lines per tile if arg > 0
    if opts.linesPerTile:
        resamp.linesPerTile = opts.linesPerTile

    # Prepare input rasters
    inSlcDataset = productSlc.getSlcDataset(opts.frequency, opts.polarization)
    inSlcRaster = Raster('', h5=inSlcDataset)
    azOffsetRaster = Raster(
        filename=os.path.join(opts.offsetdir, 'azimuth.off'))
    rgOffsetRaster = Raster(filename=os.path.join(opts.offsetdir, 'range.off'))

    # Init output directory
    if opts.outPathAndFile:
        path, file = os.path.split(opts.outPathAndFile)
        if not os.path.isdir(path):
            os.makedirs(path)

    # Prepare output raster
    driver = gdal.GetDriverByName('ISCE')
    slcPathAndName = opts.outPathAndFile
    outds = driver.Create(os.path.join(slcPathAndName), rgOffsetRaster.width,
                          rgOffsetRaster.length, 1, gdal.GDT_CFloat32)
    outSlcRaster = Raster('', dataset=outds)

    # Run resamp
    resamp.resamp(inSlc=inSlcRaster,
                  outSlc=outSlcRaster,
                  rgoffRaster=rgOffsetRaster,
                  azoffRaster=azOffsetRaster)
Esempio n. 21
0
def open_product(filename: str,
                 product_type: str = None,
                 root_path: str = None):
    '''
    Open NISAR product (HDF5 file), instantianting an object
    of an existing product class (e.g. RSLC, RRSD), if
    defined, or a general product (GeneralProduct) otherwise.

    Parameters
    ----------
    filename : str
        HDF5 filename
    product_type : str
        Preliminary product type to check (e.g. RCOV) before default product type list
    root_path : str
        Preliminary root path to check (e.g., XSAR, PSAR) before default root
        path list

    Returns
    -------
    object
        Object derived from the base class

    '''

    if root_path is None:
        root_path = get_hdf5_file_root_path(filename, root_path=root_path)
    product_type = get_hdf5_file_product_type(filename,
                                              product_type=product_type,
                                              root_path=root_path)

    # set keyword arguments for class constructors
    kwargs = {}
    kwargs['hdf5file'] = filename
    kwargs['_RootPath'] = root_path

    if (product_type == 'RSLC'):

        # return SLC obj
        from nisar.products.readers import SLC
        return SLC(**kwargs)
    elif (product_type == 'RRSD'):

        # return Raw obj
        from nisar.products.readers.Raw import Raw
        return Raw(**kwargs)

    kwargs['_ProductType'] = product_type

    # return ProductFactory obj
    return GenericProduct(**kwargs)
Esempio n. 22
0
def test_run():
    # load parameters shared across all test runs
    # init geocode object and populate members
    rslc = SLC(hdf5file=os.path.join(iscetest.data, "envisat.h5"))
    orbit = rslc.getOrbit()
    native_doppler = rslc.getDopplerCentroid()
    native_doppler.bounds_error = False
    grid_doppler = native_doppler
    threshold_geo2rdr = 1e-8
    numiter_geo2rdr = 25
    delta_range = 1e-8

    # prepare geogrid
    geogrid = isce3.product.GeoGridParameters(start_x=-115.65,
                                              start_y=34.84,
                                              spacing_x=0.0002,
                                              spacing_y=-8.0e-5,
                                              width=500,
                                              length=500,
                                              epsg=4326)

    # get radar grid from HDF5
    radar_grid = isce3.product.RadarGridParameters(
        os.path.join(iscetest.data, "envisat.h5"))

    heights = [0.0, 1000.0]

    output_h5 = 'envisat_radar_grid_cube.h5'
    fid = h5py.File(output_h5, 'w')

    cube_group_name = '/science/LSAR/GCOV/metadata/radarGrid'

    add_radar_grid_cubes_to_hdf5(fid, cube_group_name, geogrid, heights,
                                 radar_grid, orbit, native_doppler,
                                 grid_doppler, threshold_geo2rdr,
                                 numiter_geo2rdr, delta_range)

    print('saved file:', output_h5)
Esempio n. 23
0
def test_run():
    '''
    check if topo runs
    '''
    # prepare Rdr2Geo init params
    h5_path = os.path.join(iscetest.data, "envisat.h5")

    radargrid = isce3.product.RadarGridParameters(h5_path)

    slc = SLC(hdf5file=h5_path)
    orbit = slc.getOrbit()
    doppler = slc.getDopplerCentroid()

    ellipsoid = isce3.core.Ellipsoid()

    # init Rdr2Geo class
    rdr2geo_obj = isce3.cuda.geometry.Rdr2Geo(radargrid, orbit,
            ellipsoid, doppler)

    # load test DEM
    dem_raster = isce3.io.Raster(os.path.join(iscetest.data, "srtm_cropped.tif"))

    # run
    rdr2geo_obj.topo(dem_raster, ".")
Esempio n. 24
0
def main(opts):
    """
    resample SLC
    """

    # prep SLC dataset input
    productSlc = SLC(hdf5file=opts.product)

    # get grids needed for resamp object instantiation
    productGrid = productSlc.getRadarGrid(opts.frequency)

    # instantiate resamp object based on user input
    if 'cuda' not in dir(isce3) and opts.gpu:
        warnings.warn('CUDA resamp not available. Switching to CPU resamp')
        opts.gpu = False

    if opts.gpu:
        resamp = isce3.cuda.image.resampSlc(
            radarGrid=productGrid,
            doppler=productSlc.getDopplerCentroid(),
            wavelength=productGrid.wavelength)
    else:
        resamp = isce3.image.resampSlc(radarGrid=productGrid,
                                       doppler=productSlc.getDopplerCentroid(),
                                       wavelength=productGrid.wavelength)

    # set number of lines per tile if arg > 0
    if opts.linesPerTile:
        resamp.linesPerTile = opts.linesPerTile

    # Prepare input rasters
    inSlcDataset = productSlc.getSlcDataset(opts.frequency, opts.polarization)
    inSlcRaster = isce3.io.raster(filename='', h5=inSlcDataset)
    azOffsetRaster = isce3.io.raster(
        filename=os.path.join(opts.offsetdir, 'azimuth.off'))
    rgOffsetRaster = isce3.io.raster(
        filename=os.path.join(opts.offsetdir, 'range.off'))

    # Init output directory
    if opts.outFilePath:
        path, _ = os.path.split(opts.outFilePath)
        os.makedirs(path, exist_ok=True)

    # Prepare output raster
    driver = gdal.GetDriverByName('ISCE')
    outds = driver.Create(opts.outFilePath, rgOffsetRaster.width,
                          rgOffsetRaster.length, 1, gdal.GDT_CFloat32)
    outSlcRaster = isce3.io.raster(filename='', dataset=outds)

    # Run resamp
    resamp.resamp(inSlc=inSlcRaster,
                  outSlc=outSlcRaster,
                  rgoffRaster=rgOffsetRaster,
                  azoffRaster=azOffsetRaster)
Esempio n. 25
0
def main(opts):
    """
    Runs isce::geocode::GeocodeCov for any GDAL raster with an associated HDF5 product.
    For example, to geocode a multilooked interferogram, provide the HDF5 product
    for the reference scene which defined the full-resolution radar geometry.
    """
    # Common driver for all output files
    driver = gdal.GetDriverByName('ISCE')

    # Open input raster
    input_raster = Raster(opts.raster)

    # Open its associated product
    slc = SLC(hdf5file=opts.h5)

    # Make ellipsoid
    ellps = isce3.core.ellipsoid()

    # Get radar grid
    radar_grid = slc.getRadarGrid()
    if (opts.alks > 1 or opts.rlks > 1):
        radar_grid = radar_grid.multilook(opts.alks, opts.rlks)

    # Get orbit
    orbit = slc.getOrbit()

    # Make reference epochs consistent
    orbit.referenceEpoch = radar_grid.referenceEpoch

    # Make a zero-Doppler LUT
    doppler = isce3.core.lut2d()

    # Compute DEM bounds for radar grid
    proj_win = isce3.geometry.geometry.getBoundsOnGround(
        orbit,
        ellps,
        doppler,
        radar_grid,
        0,
        0,
        radar_grid.width,
        radar_grid.length,
        margin=np.radians(0.01))
    # GDAL expects degrees
    proj_win = np.degrees(proj_win)

    # Extract virtual DEM covering radar bounds
    ds = gdal.Open(opts.dem, gdal.GA_ReadOnly)
    crop_dem_ds = gdal.Translate('/vsimem/dem.crop',
                                 ds,
                                 format='ISCE',
                                 projWin=proj_win)
    ds = None

    # Instantiate Geocode object
    geo = Geocode(orbit=orbit, ellipsoid=ellps, inputRaster=input_raster)

    # Set radar grid
    # geo.radarGrid(doppler,
    # 	radar_grid.referenceEpoch,
    # 	radar_grid.sensingStart,
    # 	1.0/radar_grid.prf,
    #             radar_grid.length,
    # 	radar_grid.startingRange,
    # 	radar_grid.rangePixelSpacing,
    #             radar_grid.wavelength,
    # 	radar_grid.width,
    # 	radar_grid.lookSide)

    # Get DEM geotransform from DEM raster
    lon0, dlon, _, lat0, _, dlat = crop_dem_ds.GetGeoTransform()
    ny_geo = crop_dem_ds.RasterYSize
    nx_geo = crop_dem_ds.RasterXSize
    crop_dem_ds = None
    print('Cropped DEM shape: (%d, %d)' % (ny_geo, nx_geo))

    # Open DEM raster as an ISCE raster
    dem_raster = Raster('/vsimem/dem.crop')

    # Set geographic grid
    geo.geoGrid(lon0, lat0, dlon, dlat, nx_geo, ny_geo, dem_raster.EPSG)

    # Create output raster
    if opts.outname == '':
        opts.outname = opts.raster + '.geo'
    odset = driver.Create(opts.outname, nx_geo, ny_geo, 1,
                          input_raster.getDatatype(band=1))
    output_raster = Raster('', dataset=odset)

    # Run geocoding
    geo.geocode(radar_grid, input_raster, output_raster, dem_raster)

    # Clean up
    crop_dem_ds = None
    odset = None
    gdal.Unlink('/vsimem/dem.crop')
Esempio n. 26
0
def run(cfg, resample_type):
    '''
    run resample_slc
    '''
    input_hdf5 = cfg['input_file_group']['secondary_file_path']
    scratch_path = pathlib.Path(cfg['product_path_group']['scratch_path'])
    freq_pols = cfg['processing']['input_subset']['list_of_frequencies']

    # According to the type of resampling, choose proper resample cfg
    resamp_args = cfg['processing'][f'{resample_type}_resample']

    # Get SLC parameters
    slc = SLC(hdf5file=input_hdf5)

    info_channel = journal.info('resample_slc.run')
    info_channel.log('starting resampling SLC')

    # Check if use GPU or CPU resampling
    use_gpu = isce3.core.gpu_check.use_gpu(cfg['worker']['gpu_enabled'],
                                           cfg['worker']['gpu_id'])

    if use_gpu:
        # Set current CUDA device
        device = isce3.cuda.core.Device(cfg['worker']['gpu_id'])
        isce3.cuda.core.set_device(device)

    t_all = time.time()

    for freq in freq_pols.keys():
        # Get frequency specific parameters
        radar_grid = slc.getRadarGrid(frequency=freq)
        native_doppler = slc.getDopplerCentroid(frequency=freq)

        # Open offsets
        offsets_dir = pathlib.Path(resamp_args['offsets_dir'])

        # Create separate directories for coarse and fine resample
        # Open corresponding range/azimuth offsets
        resample_slc_scratch_path = scratch_path / \
                                    f'{resample_type}_resample_slc' / f'freq{freq}'
        if resample_type == 'coarse':
            offsets_path = offsets_dir / 'geo2rdr' / f'freq{freq}'
            rg_off = isce3.io.Raster(str(offsets_path / 'range.off'))
            az_off = isce3.io.Raster(str(offsets_path / 'azimuth.off'))
        else:
            # We checked the existence of HH/VV offsets in resample_slc_runconfig.py
            # Select the first offsets available between HH and VV
            freq_offsets_path = offsets_dir / 'rubbersheet_offsets' / f'freq{freq}'
            if os.path.isdir(str(freq_offsets_path / 'HH')):
                offsets_path = freq_offsets_path / 'HH'
            else:
                offsets_path = freq_offsets_path / 'VV'
            rg_off = isce3.io.Raster(str(offsets_path / 'range.off.vrt'))
            az_off = isce3.io.Raster(str(offsets_path / 'azimuth.off.vrt'))

        # Create resample slc directory
        resample_slc_scratch_path.mkdir(parents=True, exist_ok=True)

        # Initialize CPU or GPU resample object accordingly
        if use_gpu:
            Resamp = isce3.cuda.image.ResampSlc
        else:
            Resamp = isce3.image.ResampSlc

        resamp_obj = Resamp(radar_grid, native_doppler)

        # If lines per tile is > 0, assign it to resamp_obj
        if resamp_args['lines_per_tile']:
            resamp_obj.lines_per_tile = resamp_args['lines_per_tile']

        # Get polarization list for which resample SLCs
        pol_list = freq_pols[freq]

        for pol in pol_list:
            # Create directory for each polarization
            out_dir = resample_slc_scratch_path / pol
            out_dir.mkdir(parents=True, exist_ok=True)
            out_path = out_dir / 'coregistered_secondary.slc'

            # Extract and create raster of SLC to resample
            h5_ds = f'/{slc.SwathPath}/frequency{freq}/{pol}'
            raster_path = f'HDF5:{input_hdf5}:{h5_ds}'
            raster = isce3.io.Raster(raster_path)

            # Create output raster
            resamp_slc = isce3.io.Raster(str(out_path), rg_off.width,
                                         rg_off.length, rg_off.num_bands,
                                         gdal.GDT_CFloat32, 'ENVI')
            resamp_obj.resamp(raster, resamp_slc, rg_off, az_off)

    t_all_elapsed = time.time() - t_all
    info_channel.log(
        f"successfully ran resample in {t_all_elapsed:.3f} seconds")
Esempio n. 27
0
def main(opts):
    """
    crossmul
    """
    # prepare input rasters
    referenceSlc = SLC(hdf5file=opts.reference)
    referenceSlcDataset = referenceSlc.getSlcDataset(opts.frequency,
                                                     opts.polarization)
    referenceSlcRaster = isce3.io.raster(filename='', h5=referenceSlcDataset)
    secondarySlc = SLC(hdf5file=opts.secondary)
    if opts.secondaryRaster:
        secondarySlcRaster = isce3.io.raster(filename=opts.secondaryRaster)
    else:
        secondarySlcDataset = secondarySlc.getSlcDataset(
            opts.frequency, opts.polarization)
        secondarySlcRaster = isce3.io.raster(filename='',
                                             h5=secondarySlcDataset)

    # prepare mulitlooked interferogram dimensions
    referenceGrid = referenceSlc.getRadarGrid(opts.frequency)
    length = int(referenceGrid.length / opts.alks)
    width = int(referenceGrid.width / opts.rlks)

    # init output directory(s)
    getDir = lambda filepath: os.path.split(filepath)[0]
    os.makedirs(getDir(opts.intFilePath), exist_ok=True)
    os.makedirs(getDir(opts.cohFilePath), exist_ok=True)

    # prepare output rasters
    driver = gdal.GetDriverByName('ISCE')
    igramDataset = driver.Create(opts.intFilePath, width, length, 1,
                                 gdal.GDT_CFloat32)
    igramRaster = isce3.io.raster(filename='', dataset=igramDataset)
    # coherence only generated when multilooked enabled
    if (opts.alks > 1 or opts.rlks > 1):
        cohDataset = driver.Create(opts.cohFilePath, width, length, 1,
                                   gdal.GDT_Float32)
        cohRaster = isce3.io.raster(filename='', dataset=cohDataset)
    else:
        cohRaster = None

    # prepare optional rasters
    if opts.rgoff:
        rgOffRaster = isce3.io.raster(filename=opts.rgoff)
    else:
        rgOffRaster = None

    if opts.azband:
        dopReference = referenceSlc.getDopplerCentroid()
        dopSecondary = secondarySlc.getDopplerCentroid()
        prf = referenceSlc.getSwathMetadata(
            opts.frequency).nominalAcquisitionPRF
        azimuthBandwidth = opts.azband
    else:
        dopReference = dopSecondary = None
        prf = azimuthBandwidth = 0.0

    # instantiate crossmul object based on user input
    if 'cuda' not in dir(isce3) and opts.gpu:
        warnings.warn('CUDA crossmul not available. Switching to CPU crossmul')
        opts.gpu = False

    if opts.gpu:
        crossmul = isce3.cuda.signal.crossmul()
    else:
        crossmul = isce3.signal.crossmul()

    crossmul.crossmul(referenceSlcRaster,
                      secondarySlcRaster,
                      igramRaster,
                      cohRaster,
                      rngOffset=rgOffRaster,
                      refDoppler=dopReference,
                      secDoppler=dopSecondary,
                      rangeLooks=opts.rlks,
                      azimuthLooks=opts.alks,
                      prf=prf,
                      azimuthBandwidth=azimuthBandwidth)
Esempio n. 28
0
def run(cfg):
    '''
    run geocodeSlc according to parameters in cfg dict
    '''
    # pull parameters from cfg
    input_hdf5 = cfg['input_file_group']['input_file_path']
    output_hdf5 = cfg['product_path_group']['sas_output_file']
    freq_pols = cfg['processing']['input_subset']['list_of_frequencies']
    geogrids = cfg['processing']['geocode']['geogrids']
    radar_grid_cubes_geogrid = cfg['processing']['radar_grid_cubes']['geogrid']
    radar_grid_cubes_heights = cfg['processing']['radar_grid_cubes']['heights']
    dem_file = cfg['dynamic_ancillary_file_group']['dem_file']
    threshold_geo2rdr = cfg['processing']['geo2rdr']['threshold']
    iteration_geo2rdr = cfg['processing']['geo2rdr']['maxiter']
    lines_per_block = cfg['processing']['blocksize']['y']
    dem_block_margin = cfg['processing']['dem_margin']
    flatten = cfg['processing']['flatten']

    # init parameters shared by frequency A and B
    slc = SLC(hdf5file=input_hdf5)
    orbit = slc.getOrbit()
    dem_raster = isce3.io.Raster(dem_file)
    epsg = dem_raster.get_epsg()
    proj = isce3.core.make_projection(epsg)
    ellipsoid = proj.ellipsoid

    # Doppler of the image grid (Zero for NISAR)
    image_grid_doppler = isce3.core.LUT2d()

    info_channel = journal.info("gslc.run")
    info_channel.log("starting geocode SLC")

    t_all = time.time()
    with h5py.File(output_hdf5, 'a') as dst_h5:
        for freq in freq_pols.keys():
            frequency = f"frequency{freq}"
            pol_list = freq_pols[freq]
            radar_grid = slc.getRadarGrid(freq)
            geo_grid = geogrids[freq]

            # get doppler centroid
            native_doppler = slc.getDopplerCentroid(frequency=freq)

            for polarization in pol_list:
                t_pol = time.time()

                output_dir = os.path.dirname(os.path.abspath(output_hdf5))
                os.makedirs(output_dir, exist_ok=True)

                raster_ref = f'HDF5:{input_hdf5}:/{slc.slcPath(freq, polarization)}'
                slc_raster = isce3.io.Raster(raster_ref)

                # access the HDF5 dataset for a given frequency and polarization
                dataset_path = f'/science/LSAR/GSLC/grids/{frequency}/{polarization}'
                gslc_dataset = dst_h5[dataset_path]

                # Construct the output ratster directly from HDF5 dataset
                gslc_raster = isce3.io.Raster(
                    f"IH5:::ID={gslc_dataset.id.id}".encode("utf-8"),
                    update=True)

                # run geocodeSlc
                isce3.geocode.geocode_slc(gslc_raster, slc_raster, dem_raster,
                                          radar_grid, geo_grid, orbit,
                                          native_doppler, image_grid_doppler,
                                          ellipsoid, threshold_geo2rdr,
                                          iteration_geo2rdr, lines_per_block,
                                          dem_block_margin, flatten)

                # the rasters need to be deleted
                del gslc_raster
                del slc_raster

                # output_raster_ref = f'HDF5:{output_hdf5}:/{dataset_path}'
                gslc_raster = isce3.io.Raster(
                    f"IH5:::ID={gslc_dataset.id.id}".encode("utf-8"))
                compute_stats_complex_data(gslc_raster, gslc_dataset)

                t_pol_elapsed = time.time() - t_pol
                info_channel.log(
                    f'polarization {polarization} ran in {t_pol_elapsed:.3f} seconds'
                )

            if freq.upper() == 'B':
                continue

            cube_geogrid = isce3.product.GeoGridParameters(
                start_x=radar_grid_cubes_geogrid.start_x,
                start_y=radar_grid_cubes_geogrid.start_y,
                spacing_x=radar_grid_cubes_geogrid.spacing_x,
                spacing_y=radar_grid_cubes_geogrid.spacing_y,
                width=int(radar_grid_cubes_geogrid.width),
                length=int(radar_grid_cubes_geogrid.length),
                epsg=radar_grid_cubes_geogrid.epsg)

            cube_group_name = '/science/LSAR/GSLC/metadata/radarGrid'

            native_doppler.bounds_error = False
            '''
            The native-Doppler LUT bounds error is turned off to
            computer cubes values outside radar-grid boundaries
            '''
            add_radar_grid_cubes_to_hdf5(dst_h5, cube_group_name, cube_geogrid,
                                         radar_grid_cubes_heights, radar_grid,
                                         orbit, native_doppler,
                                         image_grid_doppler, threshold_geo2rdr,
                                         iteration_geo2rdr)

    t_all_elapsed = time.time() - t_all
    info_channel.log(
        f"successfully ran geocode SLC in {t_all_elapsed:.3f} seconds")
Esempio n. 29
0
 def slc_obj(self):
     if self._slc_obj is None:
         self._slc_obj = SLC(hdf5file=self.state.input_hdf5)
     return self._slc_obj
Esempio n. 30
0
def create(cfg,
           frequency_group=None,
           frequency=None,
           geocode_dict=None,
           default_spacing_x=None,
           default_spacing_y=None):
    '''
    - frequency_group is the name of the sub-group that
    holds the fields x_posting and y_posting, which is usually
    the frequency groups "A" or "B". If these fields
    are direct member of the output_posting group, e.g 
    for radar_grid_cubes, the frequency_group should be left
     as None.
    - frequency is the frequency name, if not provided, it will be
    the same as the frequency_group.
    - geocode_dict overwrites the default geocode_dict from 
    processing.geocode
    - default_spacing_x is default pixel spacing in the X-direction
    - default_spacing_y is default pixel spacing in the Y-direction

    For production we only fix epsgcode and snap value and will
    rely on the rslc product metadta to compute the bounding box of the geocoded products
    there is a place holder in SLC product for compute Bounding box
    when that method is populated we should be able to simply say
    bbox = self.slc_obj.computeBoundingBox(epsg=state.epsg)
    for now let's rely on the run config input
    '''
    error_channel = journal.error('geogrid.create')

    # unpack and init
    if geocode_dict is None:
        geocode_dict = cfg['processing']['geocode']

    input_hdf5 = cfg['input_file_group']['input_file_path']
    dem_file = cfg['dynamic_ancillary_file_group']['dem_file']
    slc = SLC(hdf5file=input_hdf5)

    # unpack and check cfg dict values. default values set to trigger inside fix(...)
    epsg = geocode_dict['output_epsg']
    start_x = geocode_dict['top_left']['x_abs']
    start_y = geocode_dict['top_left']['y_abs']

    if frequency is None:
        frequency = frequency_group

    if frequency_group is None:
        spacing_x = geocode_dict['output_posting']['x_posting']
        spacing_y = geocode_dict['output_posting']['y_posting']
    else:
        spacing_x = geocode_dict['output_posting'][frequency_group][
            'x_posting']
        spacing_y = geocode_dict['output_posting'][frequency_group][
            'y_posting']

    end_x = geocode_dict['bottom_right']['x_abs']
    end_y = geocode_dict['bottom_right']['y_abs']

    assert epsg is not None
    assert 1024 <= epsg <= 32767

    if spacing_y is not None:

        # spacing_y from runconfig should be positive valued
        assert spacing_y > 0.0
        spacing_y = -1.0 * spacing_y

    # copy X spacing from default X spacing (if applicable)
    if spacing_x is None and default_spacing_x is not None:
        spacing_x = default_spacing_x

    # copy Y spacing from default Y spacing (if applicable)
    if spacing_y is None and default_spacing_y is not None:
        spacing_y = default_spacing_y

    if spacing_x is None or spacing_y is None:
        dem_raster = isce3.io.Raster(dem_file)

        # Set pixel spacing using the input DEM (same EPSG)
        if epsg == dem_raster.get_epsg():

            # copy X spacing from DEM
            if spacing_x is None:
                spacing_x = dem_raster.dx

                # DEM X spacing should be positive
                if spacing_x <= 0:
                    err_str = f'Expected positive pixel spacing in the X/longitude direction'
                    err_str += f' for DEM {dem_file}. Actual value: {spacing_x}.'
                    error_channel.log(err_str)
                    raise ValueError(err_str)

            # copy Y spacing from DEM
            if spacing_y is None:
                spacing_y = dem_raster.dy

                # DEM Y spacing should be negative
                if spacing_y >= 0:
                    err_str = f'Expected negative pixel spacing in the Y/latitude direction'
                    err_str += f' for DEM {dem_file}. Actual value: {spacing_y}.'
                    error_channel.log(err_str)
                    raise ValueError(err_str)

        else:
            epsg_spatial_ref = osr.SpatialReference()
            epsg_spatial_ref.ImportFromEPSG(epsg)

            # Set pixel spacing in degrees (lat/lon)
            if epsg_spatial_ref.IsGeographic():
                if spacing_x is None:
                    spacing_x = 0.00017966305682390427
                if spacing_y is None:
                    spacing_y = -0.00017966305682390427

            # Set pixel spacing in meters
            else:
                if spacing_x is None:
                    spacing_x = 20
                if spacing_y is None:
                    spacing_y = -20

    if spacing_x == 0.0 or spacing_y == 0.0:
        err_str = 'spacing_x or spacing_y cannot be 0.0'
        error_channel.log(err_str)
        raise ValueError(err_str)

    # init geogrid
    if None in [start_x, start_y, epsg, end_x, end_y]:

        # extract other geogrid params from radar grid and orbit constructed bounding box
        geogrid = isce3.product.bbox_to_geogrid(slc.getRadarGrid(frequency),
                                                slc.getOrbit(),
                                                isce3.core.LUT2d(), spacing_x,
                                                spacing_y, epsg)

        # restore runconfig start_x (if provided)
        if start_x is not None:
            end_x_from_function = geogrid.start_x + geogrid.spacing_x * geogrid.width
            geogrid.start_x = start_x
            geogrid.width = int(
                np.ceil((end_x_from_function - start_x) / geogrid.spacing_x))

        # restore runconfig end_x (if provided)
        if end_x is not None:
            geogrid.width = int(
                np.ceil((end_x - geogrid.start_x) / geogrid.spacing_x))

        # restore runconfig start_y (if provided)
        if start_y is not None:
            end_y_from_function = geogrid.start_y + geogrid.spacing_y * geogrid.length
            geogrid.start_y = start_y
            geogrid.length = int(
                np.ceil((end_y_from_function - start_y) / geogrid.spacing_y))

        # restore runconfig end_y (if provided)
        if end_y is not None:
            geogrid.length = int(
                np.ceil((end_y - geogrid.start_y) / geogrid.spacing_y))

    else:
        width = _grid_size(end_x, start_x, spacing_x)
        length = _grid_size(end_y, start_y, -1.0 * spacing_y)

        # build from probably good user values
        geogrid = isce3.product.GeoGridParameters(start_x, start_y, spacing_x,
                                                  spacing_y, width, length,
                                                  epsg)

    # recheck x+y end points before snap and length+width calculation
    end_pt = lambda start, sz, spacing: start + spacing * sz

    if end_x is None:
        end_x = end_pt(geogrid.start_x, geogrid.spacing_x, geogrid.width)

    if end_y is None:
        end_y = end_pt(geogrid.start_y, geogrid.spacing_y, geogrid.length)

    # snap all the things
    x_snap = geocode_dict['x_snap']
    y_snap = geocode_dict['y_snap']

    if x_snap is not None or y_snap is not None:
        # check snap values before proceeding
        if x_snap <= 0 or y_snap <= 0:
            err_str = 'Snap values must be > 0.'
            error_channel.log(err_str)
            raise ValueError(err_str)

        if x_snap % spacing_x != 0.0 or y_snap % spacing_y != 0:
            err_str = 'Snap values must be exact multiples of spacings. i.e. snap % spacing == 0.0'
            error_channel.log(err_str)
            raise ValueError(err_str)

        snap_coord = lambda val, snap, round_func: round_func(
            float(val) / snap) * snap
        geogrid.start_x = snap_coord(geogrid.start_x, x_snap, np.floor)
        geogrid.start_y = snap_coord(geogrid.start_y, y_snap, np.ceil)
        end_x = snap_coord(end_x, x_snap, np.ceil)
        end_y = snap_coord(end_y, y_snap, np.floor)
        geogrid.length = _grid_size(end_y, geogrid.start_y, geogrid.spacing_y)
        geogrid.width = _grid_size(end_x, geogrid.start_x, geogrid.spacing_x)

    return geogrid