Esempio n. 1
0
def test_convolve_regressors():
    # tests for convolve_regressors helper function
    conditions = ['c0', 'c1']
    onsets = [20, 40]
    paradigm = pd.DataFrame({'name': conditions, 'onset': onsets})
    # names not passed -> default names
    frame_times = np.arange(100)
    f, names = _convolve_regressors(paradigm, 'canonical', frame_times)
    assert_equal(names, ['c0', 'c1'])
Esempio n. 2
0
def test_convolve_regressors():
    # tests for convolve_regressors helper function
    conditions = ["c0", "c1"]
    onsets = [20, 40]
    paradigm = pd.DataFrame({"name": conditions, "onset": onsets})
    # names not passed -> default names
    frame_times = np.arange(100)
    f, names = _convolve_regressors(paradigm, "glover", frame_times)
    assert_equal(names, ["c0", "c1"])
Esempio n. 3
0
def test_convolve_regressors():
    # tests for convolve_regressors helper function
    conditions = ['c0', 'c1']
    onsets = [20, 40]
    paradigm = pd.DataFrame({'name': conditions,
                          'onset': onsets})
    # names not passed -> default names
    frame_times = np.arange(100)
    f, names = _convolve_regressors(paradigm, 'canonical', frame_times)
    assert_equal(names, ['c0', 'c1'])
Esempio n. 4
0
def test_convolve_regressors():
    # tests for convolve_regressors helper function
    conditions = ['c0', 'c1']
    onsets = [20, 40]
    duration = [1, 1]
    events = pd.DataFrame(
        {'trial_type': conditions, 'onset': onsets, 'duration': duration})
    # names not passed -> default names
    frame_times = np.arange(100)
    f, names = _convolve_regressors(events, 'glover', frame_times)
    assert_equal(names, ['c0', 'c1'])