Esempio n. 1
0
def test_fdr():
    n = 100
    x = np.linspace(.5 / n, 1. - .5 / n, n)
    x[:10] = .0005
    x = norm.isf(x)
    np.random.shuffle(x)
    assert_almost_equal(fdr_threshold(x, .1), norm.isf(.0005))
    assert_true(fdr_threshold(x, .001) == np.infty)
Esempio n. 2
0
def test_fdr():
    n = 100
    x = np.linspace(.5 / n, 1. - .5 / n, n)
    x[:10] = .0005
    x = norm.isf(x)
    np.random.shuffle(x)
    assert_almost_equal(fdr_threshold(x, .1), norm.isf(.0005))
    assert_true(fdr_threshold(x, .001) == np.infty)
Esempio n. 3
0
def test_fdr():
    n = 100
    x = np.linspace(.5 / n, 1. - .5 / n, n)
    x[:10] = .0005
    x = norm.isf(x)
    np.random.shuffle(x)
    assert_almost_equal(fdr_threshold(x, .1), norm.isf(.0005))
    assert fdr_threshold(x, .001) == np.infty
    with pytest.raises(ValueError):
        fdr_threshold(x, -.1)
    with pytest.raises(ValueError):
        fdr_threshold(x, 1.5)
        labels, res = run_glm(texture.T,
                              design_matrix.values[:texture.shape[1]])
        #######################################################################
        # contrast estimation
        for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
            print('  Contrast % 2i out of %i: %s' %
                  (index + 1, len(contrasts), contrast_id))
            if subject_idx == 0:
                effects[contrast_id] = []

            contrast_ = compute_contrast(labels, res, contrast_val)
            z_map = contrast_.z_score()
            effect = contrast_.effect
            effects[contrast_id].append(effect)
            # Create snapshots of the contrasts
            threshold = fdr_threshold(z_map, alpha=.05)
            out_file = os.path.join(
                write_dir, '%s_%s_z_map.png' % (contrast_id, hemisphere))
            plotting.plot_surf_stat_map(fsaverage['infl_%s' % hemisphere],
                                        z_map,
                                        hemi=hemisphere,
                                        title=contrast_id,
                                        colorbar=True,
                                        output_file=out_file,
                                        threshold=threshold,
                                        bg_map=fsaverage['sulc_%s' %
                                                         hemisphere])

import pandas as pd
n_subjects = len(subjects)
group_design_matrix = pd.DataFrame([1] * n_subjects, columns=['intercept'])
def threshold_and_save(img, masker):
    data = masker.transform(img)
    thr = fdr_threshold(data, 0.05)
    data[np.abs(data) <= thr] = 0
    thr_img = masker.inverse_transform(data)
    thr_img.to_filename(img.replace('.nii.gz', '_thr.nii.gz'))