Esempio n. 1
0
def build_workflow(config_file, retval):
    """Create the Nipype Workflow that supports the whole execution graph."""
    from niworkflows.utils.bids import collect_participants, check_pipeline_version
    from niworkflows.utils.misc import check_valid_fs_license
    from niworkflows.reports import generate_reports
    from .. import config
    from ..utils.misc import check_deps
    from ..workflows.base import init_fmriprep_wf

    config.load(config_file)
    build_log = config.loggers.workflow

    output_dir = config.execution.output_dir
    version = config.environment.version

    retval["return_code"] = 1
    retval["workflow"] = None

    # warn if older results exist: check for dataset_description.json in output folder
    msg = check_pipeline_version(
        version, output_dir / "fmriprep-rodents" / "dataset_description.json")
    if msg is not None:
        build_log.warning(msg)

    # Please note this is the input folder's dataset_description.json
    dset_desc_path = config.execution.bids_dir / "dataset_description.json"
    if dset_desc_path.exists():
        from hashlib import sha256

        desc_content = dset_desc_path.read_bytes()
        config.execution.bids_description_hash = sha256(
            desc_content).hexdigest()

    # First check that bids_dir looks like a BIDS folder
    subject_list = collect_participants(
        config.execution.layout,
        participant_label=config.execution.participant_label)

    # Called with reports only
    if config.execution.reports_only:
        from pkg_resources import resource_filename as pkgrf

        build_log.log(25, "Running --reports-only on participants %s",
                      ", ".join(subject_list))
        retval["return_code"] = generate_reports(
            subject_list,
            config.execution.output_dir,
            config.execution.run_uuid,
            config=pkgrf("fmriprep_rodents", "data/reports-spec.yml"),
            packagename="fmriprep-rodents",
        )
        return retval

    # Build main workflow
    init_msg = f"""
    Running fMRIPREP version {config.environment.version}:
      * BIDS dataset path: {config.execution.bids_dir}.
      * Participant list: {subject_list}.
      * Run identifier: {config.execution.run_uuid}.
      * Output spaces: {config.execution.output_spaces}."""

    if config.execution.anat_derivatives:
        init_msg += f"""
      * Anatomical derivatives: {config.execution.anat_derivatives}."""

    if config.execution.fs_subjects_dir:
        init_msg += f"""
      * Pre-run FreeSurfer's SUBJECTS_DIR: {config.execution.fs_subjects_dir}."""
    build_log.log(25, init_msg)

    retval["workflow"] = init_fmriprep_wf()

    # Check for FS license after building the workflow
    if not check_valid_fs_license():
        build_log.critical("""\
ERROR: a valid license file is required for FreeSurfer to run. fMRIPrep looked for an existing \
license file at several paths, in this order: 1) command line argument ``--fs-license-file``; \
2) ``$FS_LICENSE`` environment variable; and 3) the ``$FREESURFER_HOME/license.txt`` path. Get it \
(for free) by registering at https://surfer.nmr.mgh.harvard.edu/registration.html"""
                           )
        retval["return_code"] = 126  # 126 == Command invoked cannot execute.
        return retval

    # Check workflow for missing commands
    missing = check_deps(retval["workflow"])
    if missing:
        build_log.critical(
            "Cannot run fMRIPrep. Missing dependencies:%s",
            "\n\t* ".join(
                [""] +
                [f"{cmd} (Interface: {iface})" for iface, cmd in missing]),
        )
        retval["return_code"] = 127  # 127 == command not found.
        return retval

    config.to_filename(config_file)
    build_log.info(
        "fMRIPrep workflow graph with %d nodes built successfully.",
        len(retval["workflow"]._get_all_nodes()),
    )
    retval["return_code"] = 0
    return retval
Esempio n. 2
0
def build_workflow(config_file, retval):
    """Create the Nipype Workflow that supports the whole execution graph."""
    from niworkflows.utils.bids import collect_participants, check_pipeline_version
    from niworkflows.reports import generate_reports
    from .. import config
    from ..utils.misc import check_deps
    from ..workflows.base import init_fmriprep_wf

    config.load(config_file)
    build_log = config.loggers.workflow

    output_dir = config.execution.output_dir
    version = config.environment.version

    retval['return_code'] = 1
    retval['workflow'] = None

    # warn if older results exist: check for dataset_description.json in output folder
    msg = check_pipeline_version(
        version, output_dir / 'fmriprep' / 'dataset_description.json')
    if msg is not None:
        build_log.warning(msg)

    # Please note this is the input folder's dataset_description.json
    dset_desc_path = config.execution.bids_dir / 'dataset_description.json'
    if dset_desc_path.exists():
        from hashlib import sha256
        desc_content = dset_desc_path.read_bytes()
        config.execution.bids_description_hash = sha256(
            desc_content).hexdigest()

    # First check that bids_dir looks like a BIDS folder
    subject_list = collect_participants(
        config.execution.layout,
        participant_label=config.execution.participant_label)

    # Called with reports only
    if config.execution.reports_only:
        from pkg_resources import resource_filename as pkgrf

        build_log.log(25, 'Running --reports-only on participants %s',
                      ', '.join(subject_list))
        retval['return_code'] = generate_reports(subject_list,
                                                 config.execution.output_dir,
                                                 config.execution.work_dir,
                                                 config.execution.run_uuid,
                                                 config=pkgrf(
                                                     'fmriprep',
                                                     'data/reports-spec.yml'),
                                                 packagename='fmriprep')
        return retval

    # Build main workflow
    INIT_MSG = """
    Running fMRIPREP version {version}:
      * BIDS dataset path: {bids_dir}.
      * Participant list: {subject_list}.
      * Run identifier: {uuid}.
      * Output spaces: {spaces}.
    """.format
    build_log.log(
        25,
        INIT_MSG(version=config.environment.version,
                 bids_dir=config.execution.bids_dir,
                 subject_list=subject_list,
                 uuid=config.execution.run_uuid,
                 spaces=config.execution.output_spaces))

    retval['workflow'] = init_fmriprep_wf()

    # Check workflow for missing commands
    missing = check_deps(retval['workflow'])
    if missing:
        build_log.critical(
            "Cannot run fMRIPrep. Missing dependencies:%s", '\n\t* %s'.join([
                "{} (Interface: {})".format(cmd, iface)
                for iface, cmd in missing
            ]))
        retval['return_code'] = 127  # 127 == command not found.
        return retval

    config.to_filename(config_file)
    build_log.info("fMRIPrep workflow graph with %d nodes built successfully.",
                   len(retval['workflow']._get_all_nodes()))
    retval['return_code'] = 0
    return retval
Esempio n. 3
0
def build_workflow(config_file, retval):
    """Create the Nipype Workflow that supports the whole execution graph."""
    from niworkflows.utils.bids import collect_participants, check_pipeline_version
    from niworkflows.reports import generate_reports
    from .. import config
    from ..utils.misc import check_deps
    from ..workflows.base import init_fmriprep_wf

    config.load(config_file)
    build_log = config.loggers.workflow

    output_dir = config.execution.output_dir
    version = config.environment.version

    retval["return_code"] = 1
    retval["workflow"] = None

    # warn if older results exist: check for dataset_description.json in output folder
    msg = check_pipeline_version(
        version, output_dir / "fmriprep" / "dataset_description.json")
    if msg is not None:
        build_log.warning(msg)

    # Please note this is the input folder's dataset_description.json
    dset_desc_path = config.execution.bids_dir / "dataset_description.json"
    if dset_desc_path.exists():
        from hashlib import sha256

        desc_content = dset_desc_path.read_bytes()
        config.execution.bids_description_hash = sha256(
            desc_content).hexdigest()

    # First check that bids_dir looks like a BIDS folder
    subject_list = collect_participants(
        config.execution.layout,
        participant_label=config.execution.participant_label)

    # Called with reports only
    if config.execution.reports_only:
        from pkg_resources import resource_filename as pkgrf

        build_log.log(25, "Running --reports-only on participants %s",
                      ", ".join(subject_list))
        retval["return_code"] = generate_reports(
            subject_list,
            config.execution.output_dir,
            config.execution.run_uuid,
            config=pkgrf("fmriprep", "data/reports-spec.yml"),
            packagename="fmriprep",
        )
        return retval

    # Build main workflow
    init_msg = f"""
    Running fMRIPREP version {config.environment.version}:
      * BIDS dataset path: {config.execution.bids_dir}.
      * Participant list: {subject_list}.
      * Run identifier: {config.execution.run_uuid}.
      * Output spaces: {config.execution.output_spaces}."""

    if config.execution.anat_derivatives:
        init_msg += f"""
      * Anatomical derivatives: {config.execution.anat_derivatives}."""

    if config.execution.fs_subjects_dir:
        init_msg += f"""
      * Pre-run FreeSurfer's SUBJECTS_DIR: {config.execution.fs_subjects_dir}."""
    build_log.log(25, init_msg)

    retval["workflow"] = init_fmriprep_wf()

    # Check workflow for missing commands
    missing = check_deps(retval["workflow"])
    if missing:
        build_log.critical(
            "Cannot run fMRIPrep. Missing dependencies:%s",
            "\n\t* ".join(
                [""] +
                [f"{cmd} (Interface: {iface})" for iface, cmd in missing]),
        )
        retval["return_code"] = 127  # 127 == command not found.
        return retval

    config.to_filename(config_file)
    build_log.info(
        "fMRIPrep workflow graph with %d nodes built successfully.",
        len(retval["workflow"]._get_all_nodes()),
    )
    retval["return_code"] = 0
    return retval
Esempio n. 4
0
def build_workflow(opts, retval):
    """
    Create the Nipype Workflow that supports the whole execution
    graph, given the inputs.

    All the checks and the construction of the workflow are done
    inside this function that has pickleable inputs and output
    dictionary (``retval``) to allow isolation using a
    ``multiprocessing.Process`` that allows fmriprep to enforce
    a hard-limited memory-scope.

    """
    from bids import BIDSLayout

    from nipype import logging as nlogging, config as ncfg
    from niworkflows.utils.bids import collect_participants, check_pipeline_version
    from niworkflows.reports import generate_reports
    from ..__about__ import __version__
    from ..workflows.base import init_fmriprep_wf

    build_log = nlogging.getLogger('nipype.workflow')

    INIT_MSG = """
    Running fMRIPREP version {version}:
      * BIDS dataset path: {bids_dir}.
      * Participant list: {subject_list}.
      * Run identifier: {uuid}.

    {spaces}
    """.format

    bids_dir = opts.bids_dir.resolve()
    output_dir = opts.output_dir.resolve()
    work_dir = opts.work_dir.resolve()

    if opts.clean_workdir:
        from niworkflows.utils.misc import clean_directory
        build_log.log("Clearing previous fMRIPrep working directory: %s" %
                      work_dir)
        if not clean_directory(work_dir):
            build_log.warning(
                "Could not clear all contents of working directory: %s" %
                work_dir)

    retval['return_code'] = 1
    retval['workflow'] = None
    retval['bids_dir'] = str(bids_dir)
    retval['output_dir'] = str(output_dir)
    retval['work_dir'] = str(work_dir)

    if output_dir == bids_dir:
        build_log.error(
            'The selected output folder is the same as the input BIDS folder. '
            'Please modify the output path (suggestion: %s).', bids_dir /
            'derivatives' / ('fmriprep-%s' % __version__.split('+')[0]))
        retval['return_code'] = 1
        return retval

    # warn if older results exist
    msg = check_pipeline_version(
        __version__, output_dir / 'fmriprep' / 'dataset_description.json')
    if msg is not None:
        build_log.warning(msg)

    if bids_dir in work_dir.parents:
        build_log.error(
            'The selected working directory is a subdirectory of the input BIDS folder. '
            'Please modify the output path.')
        retval['return_code'] = 1
        return retval

    # Set up some instrumental utilities
    run_uuid = '%s_%s' % (strftime('%Y%m%d-%H%M%S'), uuid.uuid4())
    retval['run_uuid'] = run_uuid

    # First check that bids_dir looks like a BIDS folder
    layout = BIDSLayout(str(bids_dir),
                        validate=False,
                        ignore=("code", "stimuli", "sourcedata", "models",
                                "derivatives", re.compile(r'^\.')))
    subject_list = collect_participants(
        layout, participant_label=opts.participant_label)
    retval['subject_list'] = subject_list

    # Load base plugin_settings from file if --use-plugin
    if opts.use_plugin is not None:
        from yaml import load as loadyml
        with open(opts.use_plugin) as f:
            plugin_settings = loadyml(f)
        plugin_settings.setdefault('plugin_args', {})
    else:
        # Defaults
        plugin_settings = {
            'plugin': 'MultiProc',
            'plugin_args': {
                'raise_insufficient': False,
                'maxtasksperchild': 1,
            }
        }

    # Resource management options
    # Note that we're making strong assumptions about valid plugin args
    # This may need to be revisited if people try to use batch plugins
    nthreads = plugin_settings['plugin_args'].get('n_procs')
    # Permit overriding plugin config with specific CLI options
    if nthreads is None or opts.nthreads is not None:
        nthreads = opts.nthreads
        if nthreads is None or nthreads < 1:
            nthreads = cpu_count()
        plugin_settings['plugin_args']['n_procs'] = nthreads

    if opts.mem_mb:
        plugin_settings['plugin_args']['memory_gb'] = opts.mem_mb / 1024

    omp_nthreads = opts.omp_nthreads
    if omp_nthreads == 0:
        omp_nthreads = min(nthreads - 1 if nthreads > 1 else cpu_count(), 8)

    if 1 < nthreads < omp_nthreads:
        build_log.warning(
            'Per-process threads (--omp-nthreads=%d) exceed total '
            'threads (--nthreads/--n_cpus=%d)', omp_nthreads, nthreads)
    retval['plugin_settings'] = plugin_settings

    # Set up directories
    log_dir = output_dir / 'fmriprep' / 'logs'
    # Check and create output and working directories
    output_dir.mkdir(exist_ok=True, parents=True)
    log_dir.mkdir(exist_ok=True, parents=True)
    work_dir.mkdir(exist_ok=True, parents=True)

    # Nipype config (logs and execution)
    ncfg.update_config({
        'logging': {
            'log_directory': str(log_dir),
            'log_to_file': True
        },
        'execution': {
            'crashdump_dir': str(log_dir),
            'crashfile_format': 'txt',
            'get_linked_libs': False,
            'stop_on_first_crash': opts.stop_on_first_crash,
        },
        'monitoring': {
            'enabled': opts.resource_monitor,
            'sample_frequency': '0.5',
            'summary_append': True,
        }
    })

    if opts.resource_monitor:
        ncfg.enable_resource_monitor()

    # Called with reports only
    if opts.reports_only:
        from pkg_resources import resource_filename as pkgrf

        build_log.log(25, 'Running --reports-only on participants %s',
                      ', '.join(subject_list))
        if opts.run_uuid is not None:
            run_uuid = opts.run_uuid
            retval['run_uuid'] = run_uuid
        retval['return_code'] = generate_reports(subject_list,
                                                 output_dir,
                                                 work_dir,
                                                 run_uuid,
                                                 config=pkgrf(
                                                     'fmriprep',
                                                     'data/reports-spec.yml'),
                                                 packagename='fmriprep')
        return retval

    # Build main workflow
    build_log.log(
        25,
        INIT_MSG(version=__version__,
                 bids_dir=bids_dir,
                 subject_list=subject_list,
                 uuid=run_uuid,
                 spaces=opts.output_spaces))

    retval['workflow'] = init_fmriprep_wf(
        anat_only=opts.anat_only,
        aroma_melodic_dim=opts.aroma_melodic_dimensionality,
        bold2t1w_dof=opts.bold2t1w_dof,
        cifti_output=opts.cifti_output,
        debug=opts.sloppy,
        dummy_scans=opts.dummy_scans,
        echo_idx=opts.echo_idx,
        err_on_aroma_warn=opts.error_on_aroma_warnings,
        fmap_bspline=opts.fmap_bspline,
        fmap_demean=opts.fmap_no_demean,
        force_syn=opts.force_syn,
        freesurfer=opts.run_reconall,
        fs_subjects_dir=opts.fs_subjects_dir,
        hires=opts.hires,
        ignore=opts.ignore,
        layout=layout,
        longitudinal=opts.longitudinal,
        low_mem=opts.low_mem,
        medial_surface_nan=opts.medial_surface_nan,
        omp_nthreads=omp_nthreads,
        output_dir=str(output_dir),
        run_uuid=run_uuid,
        regressors_all_comps=opts.return_all_components,
        regressors_fd_th=opts.fd_spike_threshold,
        regressors_dvars_th=opts.dvars_spike_threshold,
        skull_strip_fixed_seed=opts.skull_strip_fixed_seed,
        skull_strip_template=opts.skull_strip_template[0],
        spaces=parse_spaces(opts),
        subject_list=subject_list,
        t2s_coreg=opts.t2s_coreg,
        task_id=opts.task_id,
        use_aroma=opts.use_aroma,
        use_bbr=opts.use_bbr,
        use_syn=opts.use_syn_sdc,
        work_dir=str(work_dir),
    )
    retval['return_code'] = 0

    logs_path = Path(output_dir) / 'fmriprep' / 'logs'
    boilerplate = retval['workflow'].visit_desc()

    if boilerplate:
        citation_files = {
            ext: logs_path / ('CITATION.%s' % ext)
            for ext in ('bib', 'tex', 'md', 'html')
        }
        # To please git-annex users and also to guarantee consistency
        # among different renderings of the same file, first remove any
        # existing one
        for citation_file in citation_files.values():
            try:
                citation_file.unlink()
            except FileNotFoundError:
                pass

        citation_files['md'].write_text(boilerplate)
        build_log.log(
            25, 'Works derived from this fMRIPrep execution should '
            'include the following boilerplate:\n\n%s', boilerplate)
    return retval