def test_convert_not_contiguous_2(self, dt1, dt2): xbase = nlcpy.random.rand(3, 4, 3, 4).astype(dt1) xin = nlcpy.moveaxis(xbase, 0, 2) xopt = nlcpy.sca.convert_optimized_array(xin, dtype=dt2) testing.assert_allclose(xin, xopt) assert xopt.strides != xin.strides assert xopt.dtype == dt2
def _lange(x, norm, axis): order = 'F' if x.flags.f_contiguous and not x.flags.c_contiguous else 'C' dtype = 'f' if x.dtype.char in 'fF' else 'd' if x.size == 0: shape = [x.shape[i] for i in set(range(x.ndim)) - set(axis)] return nlcpy.zeros(shape, dtype=dtype) if norm in (None, 'fro', 'f'): if x.dtype.kind == 'c': x = abs(x) return nlcpy.sqrt(nlcpy.sum(x * x, axis=axis)) if norm == nlcpy.inf: norm = 'I' else: norm = '1' lwork = x.shape[0] if norm == 'I' else 1 x = nlcpy.asarray(nlcpy.moveaxis(x, (axis[0], axis[1]), (0, 1)), order='F') y = nlcpy.empty(x.shape[2:], dtype=dtype, order='F') work = nlcpy.empty(lwork, dtype=dtype) fpe = request._get_fpe_flag() args = ( ord(norm), x._ve_array, y._ve_array, work._ve_array, veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request( 'nlcpy_norm', args, ) return nlcpy.asarray(y, order=order)
def test_moveaxis_invalid5_3(self): a = testing.shaped_arange((2, 3, 4), nlcpy) with self.assertRaises(nlcpy.AxisError): return nlcpy.moveaxis(a, [0, 1], [1, 1])
def _geev(a, jobvr): a = nlcpy.asarray(a) util._assertRankAtLeast2(a) util._assertNdSquareness(a) # used to match the contiguous of result to numpy. c_order = a.flags.c_contiguous or sum([i > 1 for i in a.shape[:-2]]) < 2 a_complex = a.dtype.char in 'FD' if a.dtype.char == 'F': dtype = 'D' f_dtype = 'f' c_dtype = 'F' elif a.dtype.char == 'D': dtype = 'D' f_dtype = 'd' c_dtype = 'D' else: dtype = 'd' if a.dtype.char == 'f': f_dtype = 'f' c_dtype = 'F' else: f_dtype = 'd' c_dtype = 'D' if a.size == 0: dtype = c_dtype if a_complex else f_dtype w = nlcpy.empty(shape=a.shape[:-1], dtype=dtype) if jobvr: vr = nlcpy.empty(shape=a.shape, dtype=dtype) return w, vr else: return w a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') wr = nlcpy.empty(a.shape[1:], dtype=dtype, order='F') wi = nlcpy.empty(a.shape[1:], dtype=dtype, order='F') vr = nlcpy.empty(a.shape if jobvr else 1, dtype=dtype, order='F') vc = nlcpy.empty(a.shape if jobvr else 1, dtype='D', order='F') n = a.shape[0] work = nlcpy.empty( 65 * n if a_complex else 66 * n, dtype=dtype, order='F') rwork = nlcpy.empty(2 * n if a_complex else 1, dtype=f_dtype, order='F') info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( a._ve_array, wr._ve_array, wi._ve_array, vr._ve_array, vc._ve_array, work._ve_array, rwork._ve_array, ord('V') if jobvr else ord('N'), veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request( 'nlcpy_eig', args, ) if a_complex: w_complex = True w = wr vc = vr else: w_complex = nlcpy.any(wi) w = wr + wi * 1.0j if w_complex: if c_order: w = nlcpy.asarray(nlcpy.moveaxis(w, 0, -1), dtype=c_dtype, order='C') else: w = nlcpy.moveaxis(nlcpy.asarray(w, dtype=c_dtype), 0, -1) else: wr = w.real w = nlcpy.moveaxis(nlcpy.asarray(wr, dtype=f_dtype), 0, -1) if jobvr: if w_complex: if c_order: vr = nlcpy.asarray( nlcpy.moveaxis(vc, (1, 0), (-1, -2)), dtype=c_dtype, order='C') else: vr = nlcpy.moveaxis( nlcpy.asarray(vc, dtype=c_dtype), (1, 0), (-1, -2)) else: if c_dtype == "F": vr = nlcpy.asarray(vc.real, dtype=f_dtype, order='C') else: vc = nlcpy.moveaxis( nlcpy.asarray(vc, dtype=c_dtype), (1, 0), (-1, -2)) vr = vc.real if jobvr: return w, vr else: return w
def _syevd(a, jobz, UPLO): a = nlcpy.asarray(a) util._assertRankAtLeast2(a) util._assertNdSquareness(a) UPLO = UPLO.upper() if UPLO not in 'UL': raise ValueError("UPLO argument must be 'L' or 'U'") # used to match the contiguous of result to numpy. c_order = a.flags.c_contiguous or sum([i > 1 for i in a.shape[:-2]]) < 2 a_complex = a.dtype.char in 'FD' if a.dtype.char == 'F': dtype = 'F' f_dtype = 'f' elif a.dtype.char == 'D': dtype = 'D' f_dtype = 'd' else: if a.dtype.char == 'f': dtype = 'f' f_dtype = 'f' else: dtype = 'd' f_dtype = 'd' if a.size == 0: w = nlcpy.empty(shape=a.shape[:-1], dtype=f_dtype) if jobz: vr = nlcpy.empty(shape=a.shape, dtype=dtype) return w, vr else: return w a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') w = nlcpy.empty(a.shape[1:], dtype=f_dtype, order='F') n = a.shape[0] if a.size > 1: if a_complex: lwork = max(2 * n + n * n, n + 48) lrwork = 1 + 5 * n + 2 * n * n if jobz else n else: lwork = max(2 * n + 32, 1 + 6 * n + 2 * n * n) if jobz else 2 * n + 32 lrwork = 1 liwork = 3 + 5 * n if jobz else 1 else: lwork = 1 lrwork = 1 liwork = 1 work = nlcpy.empty(lwork, dtype=dtype) rwork = nlcpy.empty(lrwork, dtype=f_dtype) iwork = nlcpy.empty(liwork, dtype='l') info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( a._ve_array, w._ve_array, work._ve_array, rwork._ve_array, iwork._ve_array, ord('V') if jobz else ord('N'), ord(UPLO), veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request( 'nlcpy_eigh', args, ) if c_order: w = nlcpy.asarray(nlcpy.moveaxis(w, 0, -1), order='C') else: w = nlcpy.moveaxis(w, 0, -1) if jobz: if c_order: a = nlcpy.asarray(nlcpy.moveaxis(a, (1, 0), (-1, -2)), order='C') else: a = nlcpy.moveaxis(a, (1, 0), (-1, -2)) return w, a else: return w
def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): """Finds the unique elements of an array. Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: - the indices of the input array that give the unique values - the indices of the unique array that reconstruct the input array - the number of times each unique value comes up in the input array Parameters ---------- ar : array_like Input array. Unless *axis* is specified, this will be flattened if it is not already 1-D. return_index : bool, optional If True, also return the indices of *ar* (along the specified axis, if provided, or in the flattened array) that result in the unique array. return_inverse : bool, optional If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct *ar*. return_counts : bool, optional If True, also return the number of times each unique item appears in *ar*. axis : int or None, optional The axis to operate on. If None, *ar* will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the *axis* kwarg is used. The default is None. Returns ------- unique : ndarray The sorted unique values. unique_indices : ndarray, optional The indices of the first occurrences of the unique values in the original array. Only provided if *return_index* is True. unique_inverse : ndarray, optional The indices to reconstruct the original array from the unique array. Only provided if *return_inverse* is True. unique_count : ndarray, optional The number of times each of the unique values comes up in the original array. Only provided if *return_counts* is True. Restriction ----------- *NotImplementedError*: - If 'c' is contained in *ar.dtype.kind*. Note ---- When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element. Examples -------- >>> import nlcpy as vp >>> vp.unique([1, 1, 2, 2, 3, 3]) array([1, 2, 3]) >>> a =vp.array([[1, 1], [2, 3]]) >>> vp.unique(a) array([1, 2, 3]) Return the unique rows of a 2D array >>> a = vp.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) >>> vp.unique(a, axis=0) array([[1, 0, 0], [2, 3, 4]]) Return the indices of the original array that give the unique values: >>> a = vp.array([1, 2, 2, 3, 1]) >>> u, indices = vp.unique(a, return_index=True) >>> u array([1, 2, 3]) >>> indices array([0, 1, 3]) >>> a[indices] array([1, 2, 3]) Reconstruct the input array from the unique values: >>> a = vp.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = vp.unique(a, return_inverse=True) >>> u array([1, 2, 3, 4, 6]) >>> indices array([0, 1, 4, 3, 1, 2, 1]) >>> u[indices] array([1, 2, 6, 4, 2, 3, 2]) """ ar = nlcpy.asanyarray(ar) if axis is not None: if axis < 0: axis = axis + ar.ndim if axis < 0 or axis >= ar.ndim: raise AxisError('Axis out of range') if ar.ndim > 1 and axis is not None: if ar.size == 0: if axis is None: shape = () else: shape = list(ar.shape) shape[axis] = int(shape[axis] / 2) return nlcpy.empty(shape, dtype=ar.dtype) ar = nlcpy.moveaxis(ar, axis, 0) orig_shape = ar.shape ar = ar.reshape(orig_shape[0], -1) aux = nlcpy.array(ar) perm = nlcpy.empty(ar.shape[0], dtype='l') request._push_request( 'nlcpy_sort_multi', 'sorting_op', (ar, aux, perm, return_index) ) mask = nlcpy.empty(aux.shape[0], dtype='?') mask[0] = True mask[1:] = nlcpy.any(aux[1:] != aux[:-1], axis=1) ret = aux[mask] ret = ret.reshape(-1, *orig_shape[1:]) ret = nlcpy.moveaxis(ret, 0, axis) else: ar = ar.flatten() if return_index or return_inverse: perm = ar.argsort(kind='stable' if return_index else None) aux = ar[perm] else: ar.sort() aux = ar mask = nlcpy.empty(aux.shape[0], dtype='?') if mask.size: mask[0] = True mask[1:] = aux[1:] != aux[:-1] ret = aux[mask] if not return_index and not return_inverse and not return_counts: return ret ret = (ret,) if return_index: ret += (perm[mask],) if return_inverse: imask = nlcpy.cumsum(mask) - 1 inv_idx = nlcpy.empty(mask.shape, dtype=nlcpy.intp) inv_idx[perm] = imask ret += (inv_idx,) if return_counts: nonzero = nlcpy.nonzero(mask)[0] idx = nlcpy.empty((nonzero.size + 1,), nonzero.dtype) idx[:-1] = nonzero idx[-1] = mask.size ret += (idx[1:] - idx[:-1],) return ret
def insert(arr, obj, values, axis=None): """Inserts values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which values is inserted. Support for multiple insertions when obj is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into arr. If the type of values is different from that of arr, values is converted to the type of arr. values should be shaped so that arr[...,obj,...] = values is legal. axis : int, optional Axis along which to insert values. If axis is None then arr is flattened first. Returns ------- out : ndarray A copy of arr with values inserted. Note that insert does not occur in-place: a new array is returned. If axis is None, out is a flattened array. Note: Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values is different from arr[:,[0],:] = values. See Also -------- append : Appends values to the end of an array. concatenate : Joins a sequence of arrays along an existing axis. delete : Returns a new array with sub-arrays along an axis deleted. Examples -------- >>> import nlcpy as vp >>> from nlcpy import testing >>> a = vp.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> vp.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> vp.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> vp.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> vp.testing.assert_array_equal( ... vp.insert(a, 1, [1, 2, 3], axis=1), ... vp.insert(a, [1], [[1],[2],[3]], axis=1)) >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> vp.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> vp.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> vp.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = vp.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> vp.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ a = nlcpy.asarray(arr) if axis is None: if a.ndim != 1: a = a.ravel() axis = 0 elif isinstance(axis, nlcpy.ndarray) or isinstance(axis, numpy.ndarray): axis = int(axis) elif not isinstance(axis, int): raise TypeError("an integer is required " "(got type {0})".format(type(axis).__name__)) if axis < -a.ndim or axis >= a.ndim: raise nlcpy.AxisError( "axis {0} is out of bounds for array of dimension {1}".format(axis, a.ndim)) if axis < 0: axis += a.ndim if type(obj) is slice: start, stop, step = obj.indices(a.shape[axis]) obj = nlcpy.arange(start, stop, step) else: obj = nlcpy.array(obj) if obj.dtype.char == '?': warnings.warn( "in the future insert will treat boolean arrays and " "array-likes as a boolean index instead of casting it to " "integer", FutureWarning, stacklevel=3) elif obj.dtype.char in 'fdFD': if obj.size == 1: raise TypeError( "slice indices must be integers or " "None or have an __index__ method") elif obj.size > 0: raise IndexError( 'arrays used as indices must be of integer (or boolean) type') elif obj.dtype.char in 'IL': if obj.size == 1: objval = obj[()] if obj.ndim == 0 else obj[0] if objval > a.shape[axis]: raise IndexError( "index {0} is out of bounds for axis {1} with size {2}".format( objval, axis, a.shape[axis])) else: tmp = 'float64' if obj.dtype.char == 'L' else 'int64' raise UFuncTypeError( "Cannot cast ufunc 'add' output from dtype('{0}') to " "dtype('{1}') with casting rule 'same_kind'".format(tmp, obj.dtype)) obj = obj.astype('l') if obj.ndim > 1: raise ValueError( "index array argument obj to insert must be one dimensional or scalar") if obj.ndim == 0: if obj > a.shape[axis] or obj < -a.shape[axis]: raise IndexError( "index {0} is out of bounds for axis {1} with size {2}".format( obj[()] if obj > 0 else obj[()] + a.shape[axis], axis, a.shape[axis])) newshape = list(a.shape) if obj.size == 1: values = nlcpy.array(values, copy=False, ndmin=a.ndim, dtype=a.dtype) if obj.ndim == 0: values = nlcpy.moveaxis(values, 0, axis) newshape[axis] += values.shape[axis] obj = nlcpy.array(nlcpy.broadcast_to(obj, values.shape[axis])) val_shape = list(a.shape) val_shape[axis] = values.shape[axis] values = nlcpy.broadcast_to(values, val_shape) else: newshape[axis] += obj.size values = nlcpy.array(values, copy=False, ndmin=a.ndim, dtype=a.dtype) val_shape = list(a.shape) val_shape[axis] = obj.size values = nlcpy.broadcast_to(values, val_shape) out = nlcpy.empty(newshape, dtype=a.dtype) work = nlcpy.zeros(obj.size + out.shape[axis] + 2, dtype='l') work[-1] = -1 request._push_request( 'nlcpy_insert', 'manipulation_op', (a, obj, values, out, axis, work) ) if work[-1] != -1: raise IndexError( "index {0} is out of bounds for axis {1} with size {2}" .format(obj[work[-1]], axis, out.shape[axis])) return out
def norm(x, ord=None, axis=None, keepdims=False): """Returns matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If *axis* is None, *x* must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Note``). inf means nlcpy's *inf* object. axis : {None, int, 2-tuple of ints}, optional If *axis* is an integer, it specifies the axis of *x* along which to compute the vector norms. If *axis* is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If *axis* is None then either a vector norm (when *x* is 1-D) or a matrix norm (when *x* is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Returns ------- n : ndarray Norm of the matrix or vector(s). Note ---- For values of ``ord < 1``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: .. csv-table:: :header: ord, norm for matrices, norm for vectors None, Frobenius norm, 2-norm 'fro', Frobenius norm, \- 'nuc', nuclear norm, \- inf, "max(sum(abs(x), axis=1))", max(abs(x)) -inf, "min(sum(abs(x), axis=1))", min(abs(x)) 0, \-, sum(x != 0) 1, "max(sum(abs(x), axis=0))", as below -1, "min(sum(abs(x), axis=0))", as below 2, 2-norm (largest sing. value), as below -2, smallest singular value, as below other, \-, sum(abs(x)**ord)**(1./ord) The Frobenius norm is given by :math:`|A|_F = [\\sum_{i,j}abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. Examples -------- >>> import nlcpy as vp >>> a = vp.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> vp.linalg.norm(a) # doctest: +SKIP array(7.74596669) >>> vp.linalg.norm(b) # doctest: +SKIP array(7.74596669) >>> vp.linalg.norm(b, 'fro') # doctest: +SKIP array(7.74596669) >>> vp.linalg.norm(a, vp.inf) # doctest: +SKIP array(4.) >>> vp.linalg.norm(b, vp.inf) # doctest: +SKIP array(9.) >>> vp.linalg.norm(a, -vp.inf) # doctest: +SKIP array(0.) >>> vp.linalg.norm(b, -vp.inf) # doctest: +SKIP array(2.) >>> vp.linalg.norm(a, 1) # doctest: +SKIP array(20.) >>> vp.linalg.norm(b, 1) # doctest: +SKIP array(7.) >>> vp.linalg.norm(a, -1) # doctest: +SKIP array(0.) >>> vp.linalg.norm(b, -1) # doctest: +SKIP array(6.) >>> vp.linalg.norm(a, 2) # doctest: +SKIP array(7.74596669) >>> vp.linalg.norm(b, 2) # doctest: +SKIP array(7.34846923) >>> vp.linalg.norm(a, -2) # doctest: +SKIP array(0.) >>> vp.linalg.norm(b, -2) # doctest: +SKIP array(3.75757704e-16) >>> vp.linalg.norm(a, 3) # doctest: +SKIP array(5.84803548) >>> vp.linalg.norm(a, -3) # doctest: +SKIP array(0.) Using the *axis* argument to compute vector norms: >>> c = vp.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> vp.linalg.norm(c, axis=0) # doctest: +SKIP array([1.41421356, 2.23606798, 5. ]) >>> vp.linalg.norm(c, axis=1) # doctest: +SKIP array([3.74165739, 4.24264069]) >>> vp.linalg.norm(c, ord=1, axis=1) # doctest: +SKIP array([6., 6.]) Using the axis argument to compute matrix norms: >>> m = vp.arange(8).reshape(2,2,2) >>> vp.linalg.norm(m, axis=(1,2)) # doctest: +SKIP array([ 3.74165739, 11.22497216]) >>> vp.linalg.norm(m[0, :, :]), vp.linalg.norm(m[1, :, :]) # doctest: +SKIP (array(3.74165739), array(11.22497216)) """ x = nlcpy.asarray(x) if x.dtype.char in '?ilIL': x = nlcpy.array(x, dtype='d') # used to match the contiguous of result to numpy. order = 'F' if x.flags.f_contiguous and not x.flags.c_contiguous else 'C' # Immediately handle some default, simple, fast, and common cases. if axis is None: ret = None ndim = x.ndim axis = tuple(range(x.ndim)) if ord is None and x.ndim == 2: ret = _lange(x, ord, axis) elif ord is None or ord == 2 and x.ndim == 1: x = x.ravel() if x.dtype.char in 'FD': sqnorm = nlcpy.dot(x.real, x.real) + nlcpy.dot(x.imag, x.imag) else: sqnorm = nlcpy.dot(x, x) ret = nlcpy.sqrt(sqnorm) if ret is not None: if keepdims: ret = ret.reshape(ndim * [1]) return ret elif not isinstance(axis, tuple): try: axis = (int(axis), ) except Exception: raise TypeError( "'axis' must be None, an integer or a tuple of integers") if len(axis) == 1: if ord == nlcpy.inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -nlcpy.inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: return nlcpy.sum((x != 0).astype(x.real.dtype), axis=axis, keepdims=keepdims) elif ord == 1: return nlcpy.add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: s = (nlcpy.conj(x) * x).real ret = nlcpy.sqrt(nlcpy.add.reduce(s, axis=axis, keepdims=keepdims)) return nlcpy.asarray(ret, order=order) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") ret = abs(x)**ord ret = nlcpy.add.reduce(ret, axis=axis, keepdims=keepdims) ret **= (1 / ord) if (keepdims or x.ndim > 1) and x.dtype.char in 'fF': ret = nlcpy.asarray(ret, dtype='f') else: ret = nlcpy.asarray(ret, dtype='d') return ret elif len(axis) == 2: row_axis, col_axis = axis if row_axis < 0: row_axis += x.ndim if col_axis < 0: col_axis += x.ndim if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: y = nlcpy.moveaxis(x, (row_axis, col_axis), (-2, -1)) ret = nlcpy.linalg.svd(y, compute_uv=0).max(axis=-1) elif ord == -2: y = nlcpy.moveaxis(x, (row_axis, col_axis), (-2, -1)) ret = nlcpy.linalg.svd(y, compute_uv=0).min(axis=-1) elif ord == 1: if x.shape[col_axis] == 0: raise ValueError( 'zero-size array to ' 'reduction operation maximum which has no identity') ret = _lange(x, ord, axis) elif ord == nlcpy.inf: if x.shape[row_axis] == 0: raise ValueError( 'zero-size array to ' 'reduction operation maximum which has no identity') ret = _lange(x, ord, axis) elif ord in (None, 'fro', 'f'): ret = _lange(x, ord, axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = nlcpy.add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -nlcpy.inf: if row_axis > col_axis: row_axis -= 1 ret = nlcpy.add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord == 'nuc': y = nlcpy.moveaxis(x, (row_axis, col_axis), (-2, -1)) ret = nlcpy.sum(nlcpy.linalg.svd(y, compute_uv=0), axis=-1) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) ret = nlcpy.asarray(ret, order=order) return ret else: raise ValueError("Improper number of dimensions to norm.")
def svd(a, full_matrices=True, compute_uv=True, hermitian=False): """Singular Value Decomposition. When *a* is a 2D array, it is factorized as ``u @ nlcpy.diag(s) @ vh = (u * s) @ vh``, where *u* and *vh* are 2D unitary arrays and *s* is a 1D array of *a*'s singular values. When *a* is higher-dimensional, SVD is applied in stacked mode as explained below. Parameters ---------- a : (..., M, N) array_like A real or complex array with a.ndim >= 2. full_matrices : bool, optional If True (default), *u* and *vh* have the shapes ``(..., M, M)`` and ``(..., N, N)``, respectively. Otherwise, the shapes are ``(..., M, K)`` and ``(..., K, N)``, respectively, where ``K = min(M, N)``. compute_uv : bool, optional Whether or not to compute *u* and *vh* in addition to *s*. True by default. hermitian : bool, optional If True, *a* is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Defaults to False. Returns ------- u : {(..., M, M), (..., M, K)} ndarray Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input *a*. The size of the last two dimensions depends on the value of *full_matrices*. Only returned when *compute_uv* is True. s : (..., K) ndarray Vector(s) with the singular values, within each vector sorted in descending order. The first ``a.ndim - 2`` dimensions have the same size as those of the input *a*. vh : {(..., N, N), (..., K, N)} ndarray Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input *a*. The size of the last two dimensions depends on the value of *full_matrices*. Only returned when *compute_uv* is True. Note ---- The decomposition is performed using LAPACK routine ``_gesdd``. SVD is usually described for the factorization of a 2D matrix :math:`A`. The higher-dimensional case will be discussed below. In the 2D case, SVD is written as :math:`A=USV^{H}`, where :math:`A = a`, :math:`U = u`, :math:`S = nlcpy.diag(s)` and :math:`V^{H} = vh`. The 1D array `s` contains the singular values of `a` and `u` and `vh` are unitary. The rows of `vh` are the eigenvectors of :math:`A^{H}A` and the columns of `u` are the eigenvectors of :math:`AA^{H}`. In both cases the corresponding (possibly non-zero) eigenvalues are given by ``s**2``. If `a` has more than two dimensions, then broadcasting rules apply, as explained in :ref:`Linear algebra on several matrices at once <linalg_several_matrices_at_once>`. This means that SVD is working in "stacked" mode: it iterates over all indices of the first ``a.ndim - 2`` dimensions and for each combination SVD is applied to the last two indices. Examples -------- >>> import nlcpy as vp >>> from nlcpy import testing >>> a = vp.random.randn(9, 6) + 1j*vp.random.randn(9, 6) Reconstruction based on full SVD, 2D case: >>> u, s, vh = vp.linalg.svd(a, full_matrices=True) >>> u.shape, s.shape, vh.shape ((9, 9), (6,), (6, 6)) >>> vp.testing.assert_allclose(a, vp.dot(u[:, :6] * s, vh)) >>> smat = vp.zeros((9, 6), dtype=complex) >>> smat[:6, :6] = vp.diag(s) >>> vp.testing.assert_allclose(a, vp.dot(u, vp.dot(smat, vh))) Reconstruction based on reduced SVD, 2D case: >>> u, s, vh = vp.linalg.svd(a, full_matrices=False) >>> u.shape, s.shape, vh.shape ((9, 6), (6,), (6, 6)) >>> vp.testing.assert_allclose(a, vp.dot(u * s, vh)) >>> smat = vp.diag(s) >>> vp.testing.assert_allclose(a, vp.dot(u, vp.dot(smat, vh))) """ a = nlcpy.asarray(a) util._assertRankAtLeast2(a) if hermitian: util._assertNdSquareness(a) # used to match the contiguous of result to numpy. c_order = a.flags.c_contiguous or sum([i > 1 for i in a.shape[:-2]]) < 2 a_complex = a.dtype.char in 'FD' if a.dtype == 'F': dtype = 'F' f_dtype = 'f' elif a.dtype == 'D': dtype = 'D' f_dtype = 'd' elif a.dtype == 'f': dtype = 'f' f_dtype = 'f' else: dtype = 'd' f_dtype = 'd' if hermitian: if compute_uv: # lapack returns eigenvalues in reverse order, so to reconsist. s, u = nlcpy.linalg.eigh(a) signs = nlcpy.sign(s) s = abs(s) sidx = nlcpy.argsort(s)[..., ::-1] signs = _take_along_axis(signs, sidx, signs.ndim - 1) s = _take_along_axis(s, sidx, s.ndim - 1) u = _take_along_axis(u, sidx[..., None, :], u.ndim - 1) # singular values are unsigned, move the sign into v vt = nlcpy.conjugate(u * signs[..., None, :]) vt = nlcpy.moveaxis(vt, -2, -1) return u, s, vt else: s = nlcpy.linalg.eigvalsh(a) s = nlcpy.sort(abs(s))[..., ::-1] return s m = a.shape[-2] n = a.shape[-1] min_mn = min(m, n) max_mn = max(m, n) if a.size == 0: s = nlcpy.empty(a.shape[:-2] + (min_mn, ), f_dtype) if compute_uv: if full_matrices: u_shape = a.shape[:-1] + (m, ) vt_shape = a.shape[:-2] + (n, n) else: u_shape = a.shape[:-1] + (min_mn, ) vt_shape = a.shape[:-2] + (min_mn, n) u = nlcpy.empty(u_shape, dtype=dtype) vt = nlcpy.empty(vt_shape, dtype=dtype) return u, s, vt else: return s a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') if compute_uv: if full_matrices: u = nlcpy.empty((m, m) + a.shape[2:], dtype=dtype, order='F') vt = nlcpy.empty((n, n) + a.shape[2:], dtype=dtype, order='F') job = 'A' else: u = nlcpy.empty((m, m) + a.shape[2:], dtype=dtype, order='F') vt = nlcpy.empty((min_mn, n) + a.shape[2:], dtype=dtype, order='F') job = 'S' else: u = nlcpy.empty(1) vt = nlcpy.empty(1) job = 'N' if a_complex: mnthr1 = int(min_mn * 17.0 / 9.0) if max_mn >= mnthr1: if job == 'N': lwork = 130 * min_mn elif job == 'S': lwork = (min_mn + 130) * min_mn else: lwork = max( (min_mn + 130) * min_mn, (min_mn + 1) * min_mn + 32 * max_mn, ) else: lwork = 64 * (min_mn + max_mn) + 2 * min_mn else: mnthr = int(min_mn * 11.0 / 6.0) if m >= n: if m >= mnthr: if job == 'N': lwork = 131 * n elif job == 'S': lwork = max((131 + n) * n, (4 * n + 7) * n) else: lwork = max((n + 131) * n, (n + 1) * n + 32 * m, (4 * n + 6) * n + m) else: if job == 'N': lwork = 64 * m + 67 * n elif job == 'S': lwork = max(64 * m + 67 * n, (3 * n + 7) * n) else: lwork = (3 * n + 7) * n else: if n >= mnthr: if job == 'N': lwork = 131 * m elif job == 'S': lwork = max((m + 131) * m, (4 * m + 7) * m) else: lwork = max((m + 131) * m, (m + 1) * m + 32 * n, (4 * m + 7) * m) else: if job == 'N': lwork = 67 * m + 64 * n else: lwork = max(67 * m + 64 * n, (3 * m + 7) * m) s = nlcpy.empty((min_mn, ) + a.shape[2:], dtype=f_dtype, order='F') work = nlcpy.empty(lwork, dtype=dtype) if a_complex: if job == 'N': lrwork = 5 * min_mn else: lrwork = min_mn * max(5 * min_mn + 7, 2 * max(m, n) + 2 * min_mn + 1) else: lrwork = 1 rwork = nlcpy.empty(lrwork, dtype=f_dtype) iwork = nlcpy.empty(8 * min_mn, dtype=f_dtype) info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( ord(job), a._ve_array, s._ve_array, u._ve_array, vt._ve_array, work._ve_array, rwork._ve_array, iwork._ve_array, veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request( 'nlcpy_svd', args, ) if c_order: s = nlcpy.asarray(nlcpy.moveaxis(s, 0, -1), order='C') else: s = nlcpy.moveaxis(s, 0, -1) if compute_uv: u = nlcpy.moveaxis(u, (1, 0), (-1, -2)) if not full_matrices: u = u[..., :m, :min_mn] if c_order: u = nlcpy.asarray(u, dtype=dtype, order='C') vt = nlcpy.asarray(nlcpy.moveaxis(vt, (1, 0), (-1, -2)), dtype, order='C') else: vt = nlcpy.moveaxis(nlcpy.asarray(vt, dtype), (1, 0), (-1, -2)) return u, s, vt else: return s
def cholesky(a): """Cholesky decomposition. Return the Cholesky decomposition, *L* * *L.H*, of the square matrix *a*, where *L* is lower-triangular and *.H* is the conjugate transpose operator (which is the ordinary transpose if *a* is real-valued). *a* must be Hermitian (symmetric if real-valued) and positive-definite. Only *L* is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) ndarray Upper or lower-triangular Cholesky factor of *a*. Note ---- The Cholesky decomposition is often used as a fast way of solving :math:`Ax = b` (when *A* is both Hermitian/symmetric and positive-definite). First, we solve for y in :math:`Ly = b`, and then for x in :math:`L.Hx = y`. Examples -------- >>> import nlcpy as vp >>> A = vp.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = vp.linalg.cholesky(A) >>> L array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> vp.dot(L, vp.conjugate(L.T)) # verify that L * L.H = A array([[1.+0.j, 0.-2.j], [0.+2.j, 5.+0.j]]) """ a = nlcpy.asarray(a) util._assertRankAtLeast2(a) util._assertNdSquareness(a) if a.dtype == 'F': dtype = 'D' L_dtype = 'F' elif a.dtype == 'D': dtype = 'D' L_dtype = 'D' elif a.dtype == 'f': dtype = 'd' L_dtype = 'f' else: dtype = 'd' L_dtype = 'd' if a.size == 0: return nlcpy.empty(a.shape, dtype=L_dtype) # used to match the contiguous of result to numpy. c_order = a.flags.c_contiguous or sum([i > 1 for i in a.shape[:-2]]) < 2 a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( a._ve_array, veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request( 'nlcpy_cholesky', args, callback=util._assertPositiveDefinite(info)) if c_order: L = nlcpy.asarray(nlcpy.moveaxis(a, (1, 0), (-1, -2)), dtype=L_dtype, order='C') else: L = nlcpy.moveaxis(nlcpy.asarray(a, dtype=L_dtype), (1, 0), (-1, -2)) return L
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): """Returns evenly spaced numbers over a specified interval. Returns *num* evenly spaced samples, calculated over the interval ``[start, stop]``. The endpoint of the interval can optionally be excluded. Parameters ---------- start : array_like The starting value of the sequence. stop : array_like The end value of the sequence, unless *endpoint* is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that *stop* is excluded. Note that the step size changes when *endpoint* is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, *stop* is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (*samples*, *step*) where *step* is the spacing between samples. dtype : dtype, optional The type of the output array. If *dtype* is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. Returns ------- samples : ndarray There are *num* equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether *endpoint* is True or False). step : float, optional Only returned if *retstep* is True Size of spacing between samples. See Also -------- arange : Returns evenly spaced values within a given interval. Examples -------- >>> import nlcpy as vp >>> vp.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> vp.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> vp.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), array([0.25])) """ num = operator.index(num) if num < 0: raise ValueError("Number of samples, %s, must be non-negative." % num) dtype_kind = numpy.dtype(dtype).kind if dtype_kind == 'V': raise NotImplementedError( 'void dtype in linspace is not implemented yet.') start = nlcpy.asarray(start) stop = nlcpy.asarray(stop) dt = numpy.result_type(start, stop, float(num)) if start.dtype.char in '?iIlL' or stop.dtype.char in '?iIlL': dt = 'D' if dt.char in 'FD' else 'd' if dtype is None: dtype = dt start = nlcpy.asarray(start, dtype=dt) stop = nlcpy.asarray(stop, dtype=dt) delta = stop - start div = (num - 1) if endpoint else num if num == 0: ret = nlcpy.empty((num, ) + delta.shape, dtype=dtype) if retstep: ret = (ret, nlcpy.NaN) return ret elif div == 0 or num == 1: ret = nlcpy.resize(start, (1, ) + delta.shape).astype(dtype) if retstep: ret = (ret, stop) return ret else: ret = nlcpy.empty((num, ) + delta.shape, dtype=dtype) retdata = ret delta = delta[nlcpy.newaxis] start = nlcpy.array(nlcpy.broadcast_to(start, delta.shape)) stop = nlcpy.array(nlcpy.broadcast_to(stop, delta.shape)) step = delta / div if div > 1 else delta if retdata._memloc in {on_VE, on_VE_VH}: denormal = nlcpy.zeros(1, dtype='l') request._push_request( "nlcpy_linspace", "creation_op", (ret, start, stop, delta, step, int(endpoint), denormal)) if axis != 0: ret = nlcpy.moveaxis(ret, 0, axis) if retstep: ret = (ret, step) if retdata._memloc in {on_VH, on_VE_VH}: del retdata.vh_data del step.vh_data typ = numpy.dtype(dtype).type if retstep: (retdata.vh_data, step.vh_data) = numpy.linspace(typ(start), typ(stop), num, endpoint, typ(retstep), dtype, axis) else: retdata.vh_data = numpy.linspace(typ(start), typ(stop), num, endpoint, typ(retstep), dtype, axis) return ret
def inv(a): """Computes the (multiplicative) inverse of a matrix. Given a square matrix *a*, return the matrix *ainv* satisfying :: dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]). Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray (Multiplicative) inverse of the matrix *a*. Note ---- Broadcasting rules apply, see the :ref:`nlcpy.linalg <nlcpy_linalg>` documentation for details. Examples -------- >>> import nlcpy as vp >>> from nlcpy import testing >>> a = vp.array([[1., 2.], [3., 4.]]) >>> ainv = vp.linalg.inv(a) >>> vp.testing.assert_allclose(vp.dot(a, ainv), vp.eye(2), atol=1e-8, rtol=1e-5) >>> vp.testing.assert_allclose(vp.dot(ainv, a), vp.eye(2), atol=1e-8, rtol=1e-5) Inverses of several matrices can be computed at once: >>> a = vp.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> vp.linalg.inv(a) # doctest: +SKIP array([[[-2. , 1. ], [ 1.5 , -0.5 ]], <BLANKLINE> [[-1.25, 0.75], [ 0.75, -0.25]]]) """ a = nlcpy.asarray(a) # used to match the contiguous of result to numpy. c_order = a.flags.c_contiguous or sum([i > 1 for i in a.shape[:-2]]) < 2 util._assertRankAtLeast2(a) util._assertNdSquareness(a) if a.dtype.char in 'FD': dtype = 'D' if a.dtype.char in 'fF': ainv_dtype = 'F' else: ainv_dtype = 'D' else: dtype = 'd' if a.dtype.char == 'f': ainv_dtype = 'f' else: ainv_dtype = 'd' if a.size == 0: return nlcpy.asarray(a, dtype=ainv_dtype) a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') ipiv = nlcpy.empty(a.shape[-1]) work = nlcpy.empty(a.shape[-1] * 256) info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( a._ve_array, ipiv._ve_array, work._ve_array, veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request('nlcpy_inv', args, callback=util._assertNotSingular(info)) if c_order: a = nlcpy.moveaxis(a, (1, 0), (-1, -2)) return nlcpy.asarray(a, dtype=ainv_dtype, order='C') else: a = nlcpy.asarray(a, dtype=ainv_dtype) return nlcpy.moveaxis(a, (1, 0), (-1, -2))
def solve(a, b): """Solves a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, *x*, of the well-determined, i.e., full rank, linear matrix equation :math:`ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)} array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to *b*. Note ---- The solutions are computed using LAPACK routine ``_gesv``. `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use :func:`lstsq` for the least-squares best "solution" of the system/equation. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> import nlcpy as vp >>> a = vp.array([[3,1], [1,2]]) >>> b = vp.array([9,8]) >>> x = vp.linalg.solve(a, b) >>> x array([2., 3.]) """ a = nlcpy.asarray(a) b = nlcpy.asarray(b) c_order = (a.flags.c_contiguous or a.ndim < 4 or a.ndim - b.ndim < 2 and b.flags.c_contiguous) and \ not (a.ndim < b.ndim and not b.flags.c_contiguous) util._assertRankAtLeast2(a) util._assertNdSquareness(a) if a.ndim - 1 == b.ndim: if a.shape[-1] != b.shape[-1]: raise ValueError( 'solve1: Input operand 1 has a mismatch in ' 'its core dimension 0, with gufunc signature (m,m),(m)->(m) ' '(size {0} is different from {1})'.format( b.shape[-1], a.shape[-1])) elif b.ndim == 1: raise ValueError( 'solve: Input operand 1 does not have enough dimensions ' '(has 1, gufunc core with signature (m,m),(m,n)->(m,n) requires 2)' ) else: if a.shape[-1] != b.shape[-2]: raise ValueError( 'solve: Input operand 1 has a mismatch in ' 'its core dimension 0, with gufunc signature (m,m),(m,n)->(m,n) ' '(size {0} is different from {1})'.format( b.shape[-2], a.shape[-1])) if b.ndim == 1 or a.ndim - 1 == b.ndim and a.shape[-1] == b.shape[-1]: tmp = 1 _newaxis = (None, ) else: tmp = 2 _newaxis = (None, None) for i in range(1, min(a.ndim - 2, b.ndim - tmp) + 1): if a.shape[-2 - i] != b.shape[-tmp - i] and \ 1 not in (a.shape[-2 - i], b.shape[-tmp - i]): raise ValueError( 'operands could not be broadcast together with ' 'remapped shapes [original->remapped]: {0}->({1}) ' '{2}->({3}) and requested shape ({4})'.format( str(a.shape).replace(' ', ''), str(a.shape[:-2] + _newaxis).replace(' ', '').replace( 'None', 'newaxis').strip('(,)'), str(b.shape).replace(' ', ''), str(b.shape[:-tmp] + _newaxis).replace(' ', '').replace( 'None', 'newaxis').replace('None', 'newaxis').strip('(,)'), str(b.shape[-tmp:]).replace(' ', '').strip('(,)'))) if a.dtype.char in 'FD' or b.dtype.char in 'FD': dtype = 'complex128' if a.dtype.char in 'fF' and b.dtype.char in 'fF': x_dtype = 'complex64' else: x_dtype = 'complex128' else: dtype = 'float64' if a.dtype.char == 'f' and b.dtype.char == 'f': x_dtype = 'float32' else: x_dtype = 'float64' x_shape = b.shape if b.ndim == a.ndim - 1: b = b[..., nlcpy.newaxis] diff = abs(a.ndim - b.ndim) if a.ndim < b.ndim: bcast_shape = [ b.shape[i] if b.shape[i] != 1 or i < diff else a.shape[i - diff] for i in range(b.ndim - 2) ] else: bcast_shape = [ a.shape[i] if a.shape[i] != 1 or i < diff else b.shape[i - diff] for i in range(a.ndim - 2) ] bcast_shape_a = bcast_shape + list(a.shape[-2:]) bcast_shape_b = bcast_shape + list(b.shape[-2:]) a = nlcpy.broadcast_to(a, bcast_shape_a) if bcast_shape_b != list(b.shape): b = nlcpy.broadcast_to(b, bcast_shape_b) x_shape = b.shape if b.size == 0: return nlcpy.empty(x_shape, dtype=x_dtype) a = nlcpy.array(nlcpy.moveaxis(a, (-1, -2), (1, 0)), dtype=dtype, order='F') b = nlcpy.array(nlcpy.moveaxis(b, (-1, -2), (1, 0)), dtype=dtype, order='F') info = numpy.empty(1, dtype='l') fpe = request._get_fpe_flag() args = ( a._ve_array, b._ve_array, veo.OnStack(info, inout=veo.INTENT_OUT), veo.OnStack(fpe, inout=veo.INTENT_OUT), ) request._push_and_flush_request('nlcpy_solve', args, callback=util._assertNotSingular(info)) if c_order: x = nlcpy.moveaxis(b, (1, 0), (-1, -2)).reshape(x_shape) return nlcpy.asarray(x, x_dtype, 'C') else: x = nlcpy.asarray(b, x_dtype) return nlcpy.moveaxis(x, (1, 0), (-1, -2)).reshape(x_shape)