Esempio n. 1
0
def Test(inp):
    print("Entered Test")
    wordcount = 0
    #inp = raw_input("Enter the name of the test file :  ")   # test
    #inp = raw_input("Enter the name of the test file (filename.txt) :  ")
    #path = ('./dataset/Test/input/raghuram.txt')
    import os
    script_dir = os.path.dirname(__file__)  #<-- absolute dir the script is in
    rel_path = "/dataset/Test/input/" + str(inp)
    #abs_file_path = os.path.join(script_dir, rel_path)
    #abs_file_path = os.path.abspath(os.path.dirname(__file__))

    path = os.getcwd()
    print path
    abs_file_path = str(path) + str(rel_path)
    #parentdir = os.path.dirname(path)
    #os.chdir(parentdir)
    #path = os.getcwd()
    print "\n\n\npath="
    print abs_file_path
    print "\n\n\n\n"
    #paths = os.path.abspath('dataset/Test/input/'+str(inp))
    paths = abs_file_path

    #path = ('./dataset/Test/input/'+inp)
    #f = open(paths,'r')
    arra = []
    with open(paths, 'r+') as f:
        tweets = [x.strip() for x in f]
        preprocessed = preproc.tweet_mains(tweets)
        wordcount = w.generatetestset(preprocessed, str(inp))
        svm.create_trainfile(2, str(inp))
        arra = svm.testSVM(str(inp))
    print("Leaving Test")
    return arra
Esempio n. 2
0
def Test():
    print("Entered Test")
    wordcount = 0
    path = ('./dataset/Test/input/bse.txt')
    with open(path) as f:
        tweets = [x.strip() for x in f]
        preprocessed = preproc.tweet_mains(tweets)
        wordcount = w.generatetestset(preprocessed)
    print("Leaving Test")
Esempio n. 3
0
def Test():
    print("Entered Test")
    wordcount = 0
    #inp = raw_input("Enter the name of the test file :  ")   # test
    inp = raw_input("Enter the name of the test file (filename.txt) :  ")
    #path = ('./dataset/Test/input/raghuram.txt')
    path = ('./dataset/Test/input/' + str(inp))
    #path = ('./dataset/Test/input/raghuram.txt')
    with open(path) as f:
        tweets = [x.strip() for x in f]
        preprocessed = preproc.tweet_mains(tweets)
        wordcount = w.generatetestset(preprocessed)
    print("Leaving Test")
Esempio n. 4
0
def Train():

    print("EnteredTrain")
    preprocessed = []
    wordcount = 0
    categoryId = 0
    path = ('./dataset/input/')
    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]

    for filename in glob.glob(os.path.join(path, '*.txt')):
        categoryId += 1
        with open(filename) as f:
            tweets = [x.strip() for x in f]
            preprocessed = preproc.tweet_mains(tweets)
            wordcount = w.generatewordset(preprocessed, categoryId)
            #svm.create_trainfile() "not complete"
    '''for pre in preprocessed:
        print pre'''

    print("Leaving Train")
Esempio n. 5
0
def Train():
    
    print("EnteredTrain")
    preprocessed = [] 
    wordcount = 0
    categoryId =0
    
    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]
    
    path = ('./dataset/input/')
    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]
    
    for filename in glob.glob(os.path.join(path, '*.txt')):
        with open('./dataset/test.txt','r+') as f:
            tweets = [x.strip() for x in f] 
            preprocessed = preproc.tweet_mains(tweets)
    m = Word2Vec(preprocessed)
    print m.vocab
    m.most_similar('SunRisers', topn=5)
   
    
    '''for tweet in preprocessed:
Esempio n. 6
0
def Train():

    print("EnteredTrain")
    preprocessed = []
    wordcount = 0
    categoryId = 0

    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]
    path = ('./dataset/input/')
    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]

    for filename in glob.glob(os.path.join(path, '*.txt')):
        print categoryId
        categoryId += 1
        with open(filename, 'r+') as f:
            tweets = [x.strip() for x in f]
            preprocessed.append(preproc.tweet_mains(tweets))
    for tweet in preprocessed:
        for word in tweet:
            print word
        print '\n'
    '''m = Word2Vec(preprocessed)
Esempio n. 7
0
def Train():

    print("EnteredTrain")
    preprocessed = []
    wordcount = 0
    categoryId = 0
    files = [
        './dataset/input/sports.txt', './dataset/input/finance.txt',
        './dataset/input/politics.txt', './dataset/input/technology.txt',
        './dataset/input/entertainment.txt'
    ]
    #string =[ "Hello this is it;","Hi How are you","This is Congratulations:"]

    for filename in files:
        categoryId += 1
        with open(filename) as f:
            tweets = [x.strip() for x in f]
            preprocessed = preproc.tweet_mains(tweets)
            wordcount = w.generatewordset(preprocessed, categoryId)
            #svm.create_trainfile() "not complete"
    '''for pre in preprocessed:
        print pre'''

    print("Leaving Train")