def test_predict_hf_qa(self): model = nlp2go.Model( "sshleifer/tiny-distilbert-base-cased-distilled-squad", task="question-answering") result_dict = model.predict(question="How old are you.", context="i am 10 years old") print(result_dict)
def test_predict_hf(self): supported_type = list(pipelines.SUPPORTED_TASKS.keys()) ignoree_type = [ 'table-question-answering', 'summarization', 'translation', 'text2text-generation', 'text-generation', 'conversational', 'image-classification' ] for task in supported_type: print(task) if task not in ignoree_type: model = nlp2go.Model('voidful/albert_chinese_tiny', task=task) else: continue result = model.predict(input="I [MASK] Fine.") print(result) self.assertIsInstance(result, dict) result = model.predict("I [MASK] Fine.") print(result) self.assertIsInstance(result, dict) result = model.predict({ "contexta": { "input": "I [MASK] ok.", "order": 0 }, "contextb": { "input": "I [MASK] Fine.", "field": "input", "order": 1 } }) print(result) self.assertIsInstance(result, dict)
def test_predict_tfkit(self): # tfkit pipeline from nlp2go.modelhub import MODELMAP for k in MODELMAP.keys(): model = nlp2go.Model(k) if "mrc" not in k: result_dict = model.predict(input="今季新番有咩睇") print(result_dict) self.assertIsInstance(result_dict, dict) result_dict = model.predict("今季新番有咩睇") print(result_dict) self.assertIsInstance(result_dict, dict) result_dict = model.predict({ "contexta": { "input": "今季新番有咩睇", "order": 0 }, "contextb": { "input": "冇啊", "field": "input", "order": 1 } }) self.assertIsInstance(result_dict, dict) else: result_dict = model.predict(passage="今季冇新番", question="今季新番有咩睇", topk=10) print(result_dict) self.assertIsInstance(result_dict, dict) result_dict = model.predict({ "contexta": { "input": "今季新番有咩睇", "field": "question" }, "contextb": { "input": "今季冇新番", "field": "passage" } }) print(result_dict) self.assertIsInstance(result_dict, dict)
def test_predict_hf_generate_with_parama(self): model = nlp2go.Model('sshleifer/tiny-gpt2', task="text-generation") result_dict = model.predict("I [MASK] Fine.", num_return_sequences=3) print(result_dict) self.assertEqual(len(result_dict['result']), 3)
def test_predict_tfkit_with_parama(self): model = nlp2go.Model("tfkit_zh_dream_small") result_dict = model.predict("今季新番有咩睇", decodenum=3) print(result_dict) self.assertTrue(len(result_dict['result']) == 3)