Esempio n. 1
0
def generate_final_opinion_candidates_list(opinion_candidate_list_raw,
                                           final_opinion_candidates_list,
                                           frequency_threshold):
    """Generate final opinion candidates list from raw opinion candidate list.

    Args:
        opinion_candidate_list_raw (dict): key = term, value =
        lists of extracted terms.
        final_opinion_candidates_list (list): list of final opinion candidates
        frequency_threshold (int): minimum freq. for qualifying term
    """
    for extracted_term_list in opinion_candidate_list_raw.values():
        positive_pol = 0
        negative_pol = 0
        if len(extracted_term_list) >= frequency_threshold:
            for ex_term in extracted_term_list:
                curr_polarity = ex_term.term_polarity
                if curr_polarity is not None:
                    if curr_polarity == Polarity.POS:
                        positive_pol = positive_pol + 1
                    if curr_polarity == Polarity.NEG:
                        negative_pol = negative_pol + 1

            # set polarity according majority vote
            term_polarity = Polarity.UNK
            if positive_pol > negative_pol and positive_pol > 0:
                term_polarity = Polarity.POS
            elif negative_pol >= positive_pol and negative_pol > 0:
                term_polarity = Polarity.NEG

            term = extracted_term_list[0]
            qualified_term = QualifiedTerm(term.term, term.pos, len(extracted_term_list),
                                           term_polarity)
            final_opinion_candidates_list.append(qualified_term)
    return final_opinion_candidates_list
Esempio n. 2
0
def generate_final_aspect_candidates_list(aspect_candidate_list_raw,
                                          final_aspect_candidates_list,
                                          frequency_threshold):
    """Generate final aspect candidates list from map.

    Args:
        aspect_candidate_list_raw (dict): key = term, value =
        lists of candidate terms.
        final_aspect_candidates_list (list): list of final aspect candidates
        frequency_threshold (int): minimum freq. for qualifying term
    """
    term_polarity = Polarity.UNK
    for extracted_term_list in aspect_candidate_list_raw.values():
        if len(extracted_term_list) >= frequency_threshold:
            term = extracted_term_list[0]
            qualified_term = QualifiedTerm(term.term, term.pos, len(extracted_term_list),
                                           term_polarity)
            final_aspect_candidates_list.append(qualified_term)
    return final_aspect_candidates_list