def predict(self, inputs, is_training=False): output = self(inputs, is_training=is_training) return output model = BERT_NER(param) model.build(input_shape=(3, param.batch_size, param.maxlen)) model.summary() # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入 writer = TFWriter(param.maxlen, vocab_file, modes=["valid"], check_exist=False) ner_load = TFLoader(param.maxlen, param.batch_size, epoch=3) # Metrics f1score = Metric.SparseF1Score(average="macro") precsionscore = Metric.SparsePrecisionScore(average="macro") recallscore = Metric.SparseRecallScore(average="macro") accuarcyscore = Metric.SparseAccuracy() # 保存模型 checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(tf.train.latest_checkpoint('./save')) # For test model Batch = 0 f1s = [] precisions = [] recalls = []
model = BERT_NER(param) model.build(input_shape=(3, param.batch_size, param.maxlen)) model.summary() # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入 writer = TFWriter(param.maxlen, vocab_file, modes=["valid"], task='cls', check_exist=True) load = TFLoader(param.maxlen, param.batch_size, task='cls') # Metrics f1score = Metric.SparseF1Score(average="macro") precsionscore = Metric.SparsePrecisionScore(average="macro") recallscore = Metric.SparseRecallScore(average="macro") accuarcyscore = Metric.SparseAccuracy() # 保存模型 checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(tf.train.latest_checkpoint('./save')) # For train model Batch = 0 f1s = [] precisions = []
maxlen = 128 batch_size = 64 embedding_dims = 100 vocab_file = "Input/vocab.txt" word2vec = "./corpus/word2vec.vector" class_num = 2 vocab_size = 30522 # line in vocab.txt # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入 writer = TFWriter(maxlen, vocab_file, modes=["train"], task='cls', check_exist=False) load = TFLoader(maxlen, batch_size, task='cls', epoch=3) # init_weights = writer.get_init_weight(word2vec, # vocab_size, # embedding_dims) model = TextCNN.TextCNN( maxlen, vocab_size, embedding_dims, class_num, # init_weights, weights_trainable=True) # model = TextCNN.TextCNN(maxlen, vocab_size, embedding_dims, class_num)
mask_sparse_categotical_loss = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=False) # # 初始化参数 bert_init_weights_from_checkpoint(model, model_path, param.num_hidden_layers, pooler=True) # 写入数据 通过check_exist=True参数控制仅在第一次调用时写入 writer = TFWriter(param.maxlen, vocab_file, modes=["train"], task='cls', check_exist=True) load = TFLoader(param.maxlen, param.batch_size, task='cls', epoch=5) # 训练模型 # 使用tensorboard summary_writer = tf.summary.create_file_writer("./tensorboard") # Metrics f1score = Metric.SparseF1Score(average="macro") precsionscore = Metric.SparsePrecisionScore(average="macro") recallscore = Metric.SparseRecallScore(average="macro") accuarcyscore = Metric.SparseAccuracy() # 保存模型 checkpoint = tf.train.Checkpoint(model=model) manager = tf.train.CheckpointManager(checkpoint, directory="./save",