Esempio n. 1
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        xa = nn.Linear(x, self.a)
        xab = nn.AddBias(xa, self.b)
        xabR = nn.ReLU(xab)
        xabRc = nn.Linear(xabR, self.c)
        xabRcd = nn.AddBias(xabRc, self.d)
        return xabRcd
Esempio n. 2
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        Z1 = nn.AddBias(nn.Linear(x,self.w1),self.b1)
        A1 = nn.ReLU(Z1)
        Z2 = nn.AddBias(nn.Linear(A1,self.w2),self.b2)
        A2 = nn.ReLU(Z2)
        Z3 = nn.AddBias(nn.Linear(A2,self.w3),self.b3)
        return Z3
Esempio n. 3
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        layer0in = nn.Linear(x, self.m1)
        layer0mid = nn.AddBias(layer0in, self.b1)
        layer0out = nn.ReLU(layer0mid)
        layer1in = nn.Linear(layer0out, self.m2)
        layer1mid = nn.AddBias(layer1in, self.b2)
        return layer1mid
Esempio n. 4
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"
        affine = nn.Linear(x, self.w1)
        bias1 = nn.AddBias(affine, self.b1)
        relued = nn.ReLU(bias1)
        affine2 = nn.Linear(relued, self.w2)
        bias2 = nn.AddBias(affine2, self.b2)
        relued2 = nn.ReLU(bias2)
        affine3 = nn.Linear(relued2, self.w3)
        bias3 = nn.AddBias(affine3, self.b3)
        relued3 = nn.ReLU(bias3)
        out = nn.Linear(relued3, self.w4)
        return out
Esempio n. 5
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        layer1 = nn.ReLU(
            nn.AddBias(nn.Linear(x, self.weights[0]), self.bias[0]))
        layer2 = nn.ReLU(
            nn.AddBias(nn.Linear(layer1, self.weights[1]), self.bias[1]))
        layer3 = nn.AddBias(nn.Linear(layer2, self.weights[2]), self.bias[2])
        return layer3
Esempio n. 6
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"

        # relu(x*m1 + b1)*m2 + b2
        # weights = self.m1
        # feature_input = x

        xm1 = nn.Linear(x, self.m1)  # x = feature_input, m = weight
        xm1b1 = nn.AddBias(xm1, self.b1)
        reluxm1b1 = nn.ReLU(xm1b1)
        relum2 = nn.Linear(reluxm1b1, self.m2)
        predicted_y = nn.AddBias(relum2, self.b2)
        return predicted_y
Esempio n. 7
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        xw_1 = nn.Linear(x, self.w1)
        r_1 = nn.ReLU(nn.AddBias(xw_1, self.b1))
        xw_2 = nn.Linear(r_1, self.w2)
        r_2 = nn.AddBias(xw_2, self.b2)
        xw_3 = nn.Linear(r_2, self.w3)
        r_3 = nn.AddBias(xw_3, self.b3)
        return r_3
Esempio n. 8
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        l1 = nn.Linear(x, self.w0)
        l1b = nn.AddBias(l1, self.b0)
        r1 = nn.ReLU(l1b)
        l2 = nn.Linear(r1, self.w1)
        l2b = nn.AddBias(l2, self.b1)
        return l2b
Esempio n. 9
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        xm1 = nn.Linear(x, self.m1)  # x = feature_input, m = weight
        xm1b1 = nn.AddBias(xm1, self.b1)
        reluxm1b1 = nn.ReLU(xm1b1)
        relum2 = nn.Linear(reluxm1b1, self.m2)
        predicted_y = nn.AddBias(relum2, self.b2)
        return predicted_y  # (batch_size x 10)
Esempio n. 10
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        features1 = nn.Linear(x, self.weight1)
        n = nn.AddBias(features1, self.bias1)
        b1 = nn.ReLU(n)
        features2 = nn.Linear(b1, self.weight2)
        b2 = nn.AddBias(features2, self.bias2)
        return b2
Esempio n. 11
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"
        wTx = nn.Linear(x, self.w)
        return nn.AddBias(wTx, self.bias)
Esempio n. 12
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"
        first_coefficient = nn.Linear(x, self.weight1)
        first_predict = nn.AddBias(first_coefficient, self.bia1)
        first_layer = nn.ReLU(first_predict)
        second_coefficient = nn.Linear(first_layer, self.weight2)
        second_predict = nn.AddBias(second_coefficient, self.bia2)
        second_layer = nn.ReLU(second_predict)
        third_coefficient = nn.Linear(second_layer, self.weight3)
        third_predict = nn.AddBias(third_coefficient, self.bia3)
        third_layer = nn.ReLU(third_predict)
        output = nn.AddBias(nn.Linear(third_layer, self.weight4), self.bia4)
        return output
Esempio n. 13
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        first = nn.Linear(x, self.w1)
        second = nn.AddBias(first, self.b1)
        third = nn.Linear(nn.ReLU(second), self.w2)
        fourth = nn.AddBias(third, self.b2)
        fifth = nn.Linear(nn.ReLU(fourth), self.w3)
        sixth = nn.AddBias(fifth, self.b3)
        return sixth
Esempio n. 14
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"
        # Based on the Linear Regression example given in the question
        # get the linear shape and compute the model's predictions for y
        xm1 = nn.Linear(x, self.weight1)
        predicted_y1 = nn.AddBias(xm1, self.bias1)
        # for non-linearity
        fx1 = nn.ReLU(predicted_y1)

        # In this model, I am choosing to only do 2 layer deep network
        xm2 = nn.Linear(fx1, self.weight2)
        fx_net = nn.AddBias(xm2, self.bias2)
        return fx_net
Esempio n. 15
0
def main():
    X, y = gen_data(100)
    plot_data(X, y)

    model = nn.Linear(2, 1)
    for i in range(20):
        probs = model(X)
        preds = np.where(probs >= 0, 1, 0)
        model.backward(preds - y.reshape(-1, 1))
        model.w -= 1e-2 * model.w.grad
        plot_clf(model, X, y)
        print(f'acc: {np.sum(preds == y.reshape(-1, 1)) / len(y):.2f}')
Esempio n. 16
0
    def run(self, x):
        """
		Runs the model for a batch of examples.

		Inputs:
			x: a node with shape (batch_size x 1)
		Returns:
			A node with shape (batch_size x 1) containing predicted y-values
		"""
        "*** YOUR CODE HERE ***"
        #f(x)=relu(relu(x⋅W1+b1)⋅W2+b2)⋅W3+b3
        #layer1
        layer1 = nn.Linear(x, self.m1)
        layer1WithBias = nn.AddBias(layer1, self.bias1)
        layer1Rectified = nn.ReLU(layer1WithBias)
        #layer2
        layer2 = nn.Linear(layer1Rectified, self.m2)
        layer2WithBias = nn.AddBias(layer2, self.bias2)
        layer2Rectified = nn.ReLU(layer2WithBias)
        #rectified one doesent work
        return layer2WithBias
Esempio n. 17
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"

        layerz = nn.AddBias(nn.Linear(x, self.w1), self.b1)
        for i in range(len(self.layer)):
            layerz = nn.AddBias(nn.Linear(nn.ReLU(layerz), self.layer[i]),
                                self.bias[i])
        return nn.AddBias(nn.Linear(nn.ReLU(layerz), self.w2), self.b2)
Esempio n. 18
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:

            A node with shape (batch_size x 1) containing predicted y-values
        """
        "*** YOUR CODE HERE ***"
        xm1 = nn.Linear(x, self.m1)
        xm1_add_b1 = nn.AddBias(xm1, self.b1)
        relu = nn.ReLU(xm1_add_b1)
        xm2 = nn.Linear(relu, self.m2)
        xm2_add_b2 = nn.AddBias(xm2, self.b2)
        relu2 = nn.ReLU(xm2_add_b2)
        xm3 = nn.Linear(relu2, self.m3)
        y_predict = nn.AddBias(xm3, self.b3)

        return y_predict
Esempio n. 19
0
    def run(self, xs):
        """
        Runs the model for a batch of examples.

        Although words have different lengths, our data processing guarantees
        that within a single batch, all words will be of the same length (L).

        Here `xs` will be a list of length L. Each element of `xs` will be a
        node with shape (batch_size x self.num_chars), where every row in the
        array is a one-hot vector encoding of a character. For example, if we
        have a batch of 8 three-letter words where the last word is "cat", then
        xs[1] will be a node that contains a 1 at position (7, 0). Here the
        index 7 reflects the fact that "cat" is the last word in the batch, and
        the index 0 reflects the fact that the letter "a" is the inital (0th)
        letter of our combined alphabet for this task.

        Your model should use a Recurrent Neural Network to summarize the list
        `xs` into a single node of shape (batch_size x hidden_size), for your
        choice of hidden_size. It should then calculate a node of shape
        (batch_size x 5) containing scores, where higher scores correspond to
        greater probability of the word originating from a particular language.

        Inputs:
            xs: a list with L elements (one per character), where each element
                is a node with shape (batch_size x self.num_chars)
        Returns:
            A node with shape (batch_size x 5) containing predicted scores
                (also called logits)
        """
        z = nn.Linear(xs[0], self.weights)
        h = nn.AddBias(z,self.function_bias)
        h = nn.AddBias(nn.Linear(nn.ReLU(h), self.layer2), self.bias2)
        first = True
        for i in xs:
            if first:
                first = False
                continue
            z = nn.Add(nn.Linear(i, self.weights), nn.Linear(h, self.hidden_leaf_village))
            h = nn.AddBias(nn.ReLU(z), self.function_bias)
        return nn.Linear(h, self.result_weight)
Esempio n. 20
0
    def run(self, xs):
        """
        Runs the model for a batch of examples.

        Although words have different lengths, our data processing guarantees
        that within a single batch, all words will be of the same length (L).

        Here `xs` will be a list of length L. Each element of `xs` will be a
        node with shape (batch_size x self.num_chars), where every row in the
        array is a one-hot vector encoding of a character. For example, if we
        have a batch of 8 three-letter words where the last word is "cat", then
        xs[1] will be a node that contains a 1 at position (7, 0). Here the
        index 7 reflects the fact that "cat" is the last word in the batch, and
        the index 0 reflects the fact that the letter "a" is the inital (0th)
        letter of our combined alphabet for this task.

        Your model should use a Recurrent Neural Network to summarize the list
        `xs` into a single node of shape (batch_size x hidden_size), for your
        choice of hidden_size. It should then calculate a node of shape
        (batch_size x 5) containing scores, where higher scores correspond to
        greater probability of the word originating from a particular language.

        Inputs:
            xs: a list with L elements (one per character), where each element
                is a node with shape (batch_size x self.num_chars)
        Returns:
            A node with shape (batch_size x 5) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        # print(xs)
        # print(len(xs))
        self.h = nn.ReLU(nn.Linear(xs[0], self.w_in))

        for i in range(0, len(xs)):
            self.h = nn.ReLU(
                nn.Add(nn.Linear(xs[i], self.w_in),
                       nn.Linear(self.h, self.w_hidden)))

        return nn.Linear(self.h, self.w_out)
Esempio n. 21
0
    def __init__(self, config, encoder_output_dim, action_dict, ent_dict,
                 tri_dict, arg_dict):
        self.config = config
        self.model = pm.global_collection()
        bi_rnn_dim = encoder_output_dim  # config['rnn_dim'] * 2 #+ config['edge_embed_dim']
        lmda_dim = config['lmda_rnn_dim']
        part_ent_dim = config['part_ent_rnn_dim']

        self.lmda_dim = lmda_dim
        self.bi_rnn_dim = bi_rnn_dim

        hidden_input_dim = lmda_dim * 3 + bi_rnn_dim * 2 + config['out_rnn_dim']

        self.hidden_arg = nn.Linear(hidden_input_dim,
                                    config['output_hidden_dim'],
                                    activation='tanh')
        self.output_arg = nn.Linear(config['output_hidden_dim'], len(arg_dict))

        hidden_input_dim_co = lmda_dim * 3 + bi_rnn_dim * 2 + config[
            'out_rnn_dim']
        self.hidden_ent_corel = nn.Linear(hidden_input_dim_co,
                                          config['output_hidden_dim'],
                                          activation='tanh')
        self.output_ent_corel = nn.Linear(config['output_hidden_dim'], 2)

        self.position_embed = nn.Embedding(500, 20)

        attn_input = self.bi_rnn_dim * 1 + 20 * 2
        self.attn_hidden = nn.Linear(attn_input, 80, activation='tanh')
        self.attn_out = nn.Linear(80, 1)
Esempio n. 22
0
def main():
    path = get_path(file)
    male, female = loader.read_bmi(path)

    dataset = male
    plot(dataset, title='Data', show=True)
    n_in = len(dataset.inputs[0])
    n_out = len(dataset.outputs[0])

    train_data, test_data = split(dataset, test_size=0.4)

    model = nn.Model(nn.Linear(n_in, 32, nn.sigmoid),
                     nn.Linear(32, 8, nn.sigmoid),
                     nn.Linear(8, n_out, nn.sigmoid))

    bmi = nn.Classifier(model)
    bmi.train(train_data, test_data, target_acc=0.92)

    res = result(bmi, dataset)

    plot(dataset, categories, n_cols=2, title='Data')
    plot(res, categories, title='Prediction', show=True, num=2, n_cols=2)
Esempio n. 23
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        dotProd1 = nn.Linear(x, self.w0)
        withBias1 = nn.AddBias(dotProd1, self.b0)
        firstLayer = nn.ReLU(withBias1)

        dotProd2 = nn.Linear(firstLayer, self.w1)
        outputLayer = nn.AddBias(dotProd2, self.b1)

        return outputLayer
Esempio n. 24
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        # Layer 1
        vector = nn.Linear(x, self.w)
        added_bias = nn.AddBias(vector, self.b)
        layer1_output = nn.ReLU(added_bias)
        # Layer 2
        vector2 = nn.Linear(layer1_output, self.w2)
        added_bias2 = nn.AddBias(vector2, self.b2)
        return added_bias2
Esempio n. 25
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Inputs:
            x: a node with shape (batch_size x 1)
        Returns:
            A node with shape (batch_size x 1) containing predicted y-values
        """
        biased = None

        "*** YOUR CODE HERE ***"
        step = nn.Linear(x, self.w[0])
        biased = nn.AddBias(step, self.b[0])

        for i in range(self.num_hidden_layers):
            relu = nn.ReLU(biased)

            step = nn.Linear(relu, self.w[i + 1])

            biased = nn.AddBias(step, self.b[i + 1])
        return biased
Esempio n. 26
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        x1 = nn.Linear(x, self.w[0])
        x1 = nn.AddBias(x1, self.b[0])
        activate_x = nn.ReLU(x1)
        x2 = nn.Linear(activate_x, self.w[1])
        pred_y = nn.AddBias(x2, self.b[1])
        return pred_y
        """
Esempio n. 27
0
 def run(self, states):
     """
     Runs the DQN for a batch of states.
     The DQN takes the state and returns the Q-values for all possible actions
     that can be taken. That is, if there are two actions, the network takes
     as input the state s and computes the vector [Q(s, a_1), Q(s, a_2)]
     Inputs:
         states: a (batch_size x state_dim) numpy array
         Q_target: a (batch_size x num_actions) numpy array, or None
     Output:
         result: (batch_size x num_actions) numpy array of Q-value
             scores, for each of the actions
     """
     s_w1 = nn.Linear(states, self.w1)
     relu_input = nn.AddBias(s_w1, self.b1)
     relu = nn.ReLU(relu_input)
     relu_b2 = nn.Linear(relu, self.w2)
     l1l2 = nn.AddBias(relu_b2, self.b2)
     relu_l3 = nn.ReLU(l1l2)
     l3_w3 = nn.Linear(relu_l3, self.w3)
     sol = nn.AddBias(l3_w3, self.b3)
     return sol
Esempio n. 28
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        a = nn.Linear(x, self.w1)
        b = nn.AddBias(a, self.b1)
        c = nn.ReLU(b)
        d = nn.Linear(c, self.w2)
        e = nn.AddBias(d, self.b2)
        f = nn.ReLU(e)
        g = nn.Linear(f, self.w3)
        return g
Esempio n. 29
0
def init_disc_model(state, share=True):
    if share:
        disc_model = nn.Sequential()
    else:
        disc_model = disc_shared_structure(state)

    disc_model.add(
        nn.Linear(state['d_num_filters'] * 4 * 7 * 7,
                  1,
                  weight=state['d_init'],
                  use_bias=True))

    return disc_model
Esempio n. 30
0
    def run(self, x):
        """
        Runs the model for a batch of examples.

        Your model should predict a node with shape (batch_size x 10),
        containing scores. Higher scores correspond to greater probability of
        the image belonging to a particular class.

        Inputs:
            x: a node with shape (batch_size x 784)
        Output:
            A node with shape (batch_size x 10) containing predicted scores
                (also called logits)
        """
        "*** YOUR CODE HERE ***"
        # f(x) = relu(x * W1 + b1) * W2 + b2
        x_dot_W1 = nn.Linear(x, self.W1)
        with_b1 = nn.AddBias(x_dot_W1, self.b1)
        relu = nn.ReLU(with_b1)
        x_dot_W2 = nn.Linear(relu, self.W2)
        with_b2 = nn.AddBias(x_dot_W2, self.b2)
        return with_b2