Esempio n. 1
0
    def _get_latent_code(self, x):
	x = tf.to_float(x)/255.
	fc1 = nn.fc(x, 500, nl=tf.nn.softplus, scope='e_fc1')
	fc2 = nn.fc(fc1, 500, nl=tf.nn.softplus, scope='e_fc2')
	mu = nn.fc(fc2, self.z_dims, scope='e_fc_mu')
	log_sigma_sq = nn.fc(fc2, self.z_dims, scope='e_fc_sigma')
	return mu, log_sigma_sq
Esempio n. 2
0
def demo():
    mymodel = nn.model()
    mymodel.name = "test"
    mymodel.add_prop([nn.fc(2, 100)])
    mymodel.add_prop([nn.node(100)])
    mymodel.add_prop([nn.fc(100, 2)])
    mymodel.add_prop([nn.node_out(2)])

    mymodel.train(pat_train(), pat_eval(), 10)
Esempio n. 3
0
    def network(self, input, keep_prob=0.5, reuse=None):
        with tf.variable_scope('network', reuse=reuse):
            pool_ = lambda x: nn.max_pool(x, 2, 2)
            max_out_ = lambda x: nn.max_out(x, 16)
            conv_ = lambda x, output_depth, name, trainable=True: nn.conv(
                x,
                3,
                output_depth,
                1,
                self.weight_decay,
                name=name,
                trainable=trainable)
            fc_ = lambda x, features, name, relu=True: nn.fc(
                x, features, self.weight_decay, name, relu=relu)
            VGG_MEAN = [103.939, 116.779, 123.68]
            # Convert RGB to BGR and subtract mean
            # red, green, blue = tf.split(input, 3, axis=3)
            input = tf.concat([
                input - 24,
                input - 24,
                input - 24,
            ], axis=3)

            conv_1_1 = conv_(input, 64, 'conv1_1', trainable=False)
            conv_1_2 = conv_(conv_1_1, 64, 'conv1_2', trainable=False)

            pool_1 = pool_(conv_1_2)

            conv_2_1 = conv_(pool_1, 128, 'conv2_1', trainable=False)
            conv_2_2 = conv_(conv_2_1, 128, 'conv2_2', trainable=False)

            pool_2 = pool_(conv_2_2)

            conv_3_1 = conv_(pool_2, 256, 'conv3_1')
            conv_3_2 = conv_(conv_3_1, 256, 'conv3_2')
            conv_3_3 = conv_(conv_3_2, 256, 'conv3_3')

            pool_3 = pool_(conv_3_3)

            conv_4_1 = conv_(pool_3, 512, 'conv4_1')
            conv_4_2 = conv_(conv_4_1, 512, 'conv4_2')
            conv_4_3 = conv_(conv_4_2, 512, 'conv4_3')

            pool_4 = pool_(conv_4_3)

            conv_5_1 = conv_(pool_4, 512, 'conv5_1')
            conv_5_2 = conv_(conv_5_1, 512, 'conv5_2')
            conv_5_3 = conv_(conv_5_2, 512, 'conv5_3')

            pool_5 = pool_(conv_5_3)
            if self.maxout:
                max_5 = max_out_(pool_5)
                flattened = tf.contrib.layers.flatten(max_5)
            else:
                flattened = tf.contrib.layers.flatten(pool_5)

            fc_6 = nn.dropout(fc_(flattened, 4096, 'fc6'), keep_prob)
            fc_7 = nn.dropout(fc_(fc_6, 4096, 'fc7'), keep_prob)
            fc_8 = fc_(fc_7, self.label_dim, 'fc8', relu=False)
            return fc_8
Esempio n. 4
0
 def siamese(self, input1, input2, keep_prob = 0.5, weight_decay = \
             weight_decay_factor, reuse = None):
     fc_ = lambda x, features, name, relu = True: nn.fc(x, features, weight_decay, name, relu = relu)
     feat1, _ = self.vgg(input1, keep_prob, True)
     feat2, _ = self.vgg(input2, keep_prob, True)
     with tf.variable_scope('network', reuse = reuse):
         fc_combined = tf.concat((feat1,feat2),1)
         fc_8 = nn.dropout(fc_(fc_combined, 4096, 'fc8'), keep_prob)
         fc_9 = fc_(fc_8, 2, 'fc9', relu = False)
         return fc_9
Esempio n. 5
0
def rnn_cell(mem, x, name='rnn_cell', reuse=False):
  with tf.variable_scope(name, reuse=reuse):

    with tf.variable_scope('thinging_1'):
      for i in range(0, len(mem)):
        mem[i] = nn.afc(mem[i], name='afc_' + str(i))

    with tf.variable_scope('recall'):
      for i in range(0, len(mem) - 1):
        mem[i] = nn.layer_add(nn.afc(mem[i + 1], mem[i].get_shape().as_list()[1:], name='afc_' + str(i)), mem[i], name='layer_add_' + str(i))

    with tf.variable_scope('thinging_2'):
      for i in range(0, len(mem)):
        mem[i] = nn.afc(mem[i], name='afc_' + str(i))

    with tf.variable_scope('in_flow'):
      x = nn.afc(x, name='afc_1')
      x = nn.afc(x, name='afc_2')
      x = nn.afc(x, name='afc_3')
      mem[0] = nn.layer_add(nn.fc(x, mem[0].get_shape().as_list()[1:]), mem[0])

    with tf.variable_scope('out_flow'):
      x = nn.layer_add(nn.fc(mem[0], O_SHAPE, name='fc_mem'), nn.fc(x, O_SHAPE, name='fc_x'))
      x = nn.afc(x, name='afc_1')
      x = nn.afc(x, name='afc_2')
      x = nn.afc(x, name='afc_3')

    with tf.variable_scope('thinging_3'):
      for i in range(0, len(mem)):
        mem[i] = nn.afc(mem[i], name='afc_' + str(i))

    with tf.variable_scope('remember'):
      for i in range(len(mem) - 1, 0, -1):
        mem[i] = nn.layer_add(nn.afc(mem[i - 1], mem[i].get_shape().as_list()[1:], name='afc_' + str(i)), mem[i], name='layer_add_' + str(i))

    with tf.variable_scope('thinging_4'):
      for i in range(0, len(mem)):
        mem[i] = nn.afc(mem[i], name='afc_' + str(i))

    return [mem, x]
Esempio n. 6
0
    def _build_model(self, triplets):
        '''
            :param triplets: batches of triplets, [3*N, 64, 64, 3]
            :return: a model dict containing all Tensors
        '''

        model = {}
        if self._data_format == "NCHW":
            images = tf.transpose(triplets, [0, 3, 1, 2])

        shape_dict = {}
        shape_dict['conv1'] = [8, 8, 3, 16]
        with tf.variable_scope('conv1'):
            model['conv1'] = nn.conv_layer(
                self._data_format, triplets, 1, 'VALID',
                shape_dict['conv1'])  # [3N,57,57,16]
        model['pool1'] = nn.max_pool2d(self._data_format, model['conv1'], 2,
                                       'VALID')  # outsize [3N, 28, 28, 16]

        shape_dict['conv2'] = [5, 5, 16, 7]
        with tf.variable_scope('conv2'):
            model['conv2'] = nn.conv_layer(self._data_format, model['pool1'],
                                           1, 'VALID',
                                           shape_dict['conv2'])  # [3N,24,24,7]
        model['pool2'] = nn.max_pool2d(self._data_format, model['conv2'], 2,
                                       'SAME')  # [3N, 12, 12, 7]

        shape_dict['fc1'] = 256
        with tf.variable_scope('fc1'):
            model['fc1'] = nn.fc(model['pool2'],
                                 shape_dict['fc1'])  # [3N, 256]

        shape_dict['fc2'] = 16
        with tf.variable_scope('fc2'):
            model['fc2'] = nn.fc(model['fc1'], shape_dict['fc2'])  # [3N, 16]

        return model
Esempio n. 7
0
    def _reconstruct(self, z):
	fc1 = nn.fc(z, 500, nl=tf.nn.softplus, scope='d_fc1')
	fc2 = nn.fc(fc1, 500, nl=tf.nn.softplus, scope='d_fc2')
	_x = nn.fc(fc2, self.x_dims, nl=tf.nn.sigmoid, scope='d_fc3')
	return _x
Esempio n. 8
0
    def __init__(
        self,
        config,
        output_dir="./output",
        use_rnn=False,
        testing=False,
        use_best=False,
    ):
        self.config = config
        self.output_dir = output_dir
        self.checkpoint_path = os.path.join(self.output_dir, "checkpoint")
        self.best_ckpt_path = os.path.join(self.output_dir, "best_ckpt")
        self.weights_path = os.path.join(self.output_dir, "weights")
        self.log_dir = os.path.join(self.output_dir, "log")
        self.use_rnn = use_rnn

        # Placeholder
        with tf.variable_scope("placeholders") as scope:
            self.signals = tf.placeholder(dtype=tf.float32,
                                          shape=(None,
                                                 self.config["input_size"], 1,
                                                 1),
                                          name='signals')
            self.labels = tf.placeholder(dtype=tf.int32,
                                         shape=(None, ),
                                         name='labels')
            self.is_training = tf.placeholder(dtype=tf.bool,
                                              shape=(),
                                              name='is_training')

            if self.use_rnn:
                self.loss_weights = tf.placeholder(dtype=tf.float32,
                                                   shape=(None, ),
                                                   name='loss_weights')
                self.seq_lengths = tf.placeholder(dtype=tf.int32,
                                                  shape=(None, ),
                                                  name='seq_lengths')

        # Monitor global step update
        self.global_step = tf.Variable(0, trainable=False, name='global_step')

        # Monitor the number of epochs passed
        self.global_epoch = tf.Variable(0,
                                        trainable=False,
                                        name='global_epoch')

        # Build a network that receives inputs from placeholders
        net = self.build_cnn()

        if self.use_rnn:
            # Check whether the corresponding config is given
            if "n_rnn_layers" not in self.config:
                raise Exception("Invalid config.")
            # Append the RNN if needed
            net = self.append_rnn(net)

        # Softmax linear
        net = nn.fc("softmax_linear", net, self.config["n_classes"], bias=0.0)

        # Outputs
        self.logits = net
        self.preds = tf.argmax(self.logits, axis=1)

        # Cross-entropy loss
        self.loss_per_sample = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=self.labels, logits=self.logits, name="loss_ce_per_sample")

        with tf.name_scope("loss_ce_mean") as scope:
            if self.use_rnn:
                # Weight by sequence
                loss_w_seq = tf.multiply(self.loss_weights,
                                         self.loss_per_sample)

                # Weight by class
                sample_weights = tf.reduce_sum(
                    tf.multiply(
                        tf.one_hot(indices=self.labels,
                                   depth=self.config["n_classes"]),
                        np.asarray(self.config["class_weights"],
                                   dtype=np.float32)), 1)
                loss_w_class = tf.multiply(loss_w_seq, sample_weights)

                # Computer average loss scaled with the sequence length
                self.loss_ce = tf.reduce_sum(loss_w_class) / tf.reduce_sum(
                    self.loss_weights)
            else:
                self.loss_ce = tf.reduce_mean(self.loss_per_sample)

        # Regularization loss
        self.reg_losses = self.regularization_loss()

        # Total loss
        self.loss = self.loss_ce + self.reg_losses

        # Metrics (used when we want to compute a metric from the output from minibatches)
        with tf.variable_scope("stream_metrics") as scope:
            self.metric_value_op, self.metric_update_op = contrib_metrics.aggregate_metric_map(
                {
                    "loss":
                    tf.metrics.mean(values=self.loss),
                    "accuracy":
                    tf.metrics.accuracy(labels=self.labels,
                                        predictions=self.preds),
                    "precision":
                    tf.metrics.precision(labels=self.labels,
                                         predictions=self.preds),
                    "recall":
                    tf.metrics.recall(labels=self.labels,
                                      predictions=self.preds),
                })
            # Manually create reset operations of local vars
            metric_vars = contrib_slim.get_local_variables(scope=scope.name)
            self.metric_init_op = tf.variables_initializer(metric_vars)

        # Training outputs
        self.train_outputs = {
            "global_step": self.global_step,
            "train/loss": self.loss,
            "train/preds": self.preds,
            "train/stream_metrics": self.metric_update_op,
        }
        if self.use_rnn:
            self.train_outputs.update({
                "train/init_state": self.init_state,
                "train/final_state": self.final_state,
            })

        # Test outputs
        self.test_outputs = {
            "global_step": self.global_step,
            "test/loss": self.loss,
            "test/preds": self.preds,
        }
        if self.use_rnn:
            self.test_outputs.update({
                "test/init_state": self.init_state,
                "test/final_state": self.final_state,
            })

        # Tensoflow
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        if not testing:
            self.train_writer = tf.summary.FileWriter(
                os.path.join(self.log_dir, "train"))
            self.train_writer.add_graph(self.sess.graph)
            logger.info("Saved tensorboard graph to {}".format(
                self.train_writer.get_logdir()))

        # Optimizer
        if not testing:
            # self.lr = tf.train.exponential_decay(
            #     learning_rate=self.config["learning_rate_decay"],
            #     global_step=self.global_step,
            #     decay_steps=self.config["decay_steps"],
            #     decay_rate=self.config["decay_rate"],
            #     staircase=False,
            #     name="learning_rate"
            # )
            self.lr = tf.constant(self.config["learning_rate"],
                                  dtype=tf.float32)
            with tf.variable_scope("optimizer") as scope:
                update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
                with tf.control_dependencies(update_ops):
                    # Pretraining
                    if not self.use_rnn:
                        self.train_step_op, self.grad_op = nn.adam_optimizer(
                            loss=self.loss,
                            training_variables=tf.trainable_variables(),
                            global_step=self.global_step,
                            # learning_rate=self.config["learning_rate"],
                            learning_rate=self.lr,
                            beta1=self.config["adam_beta_1"],
                            beta2=self.config["adam_beta_2"],
                            epsilon=self.config["adam_epsilon"],
                        )
                    # Fine-tuning
                    else:
                        # Use different learning rates for CNN and RNN
                        self.train_step_op, self.grad_op = nn.adam_optimizer_clip(
                            loss=self.loss,
                            training_variables=tf.trainable_variables(),
                            global_step=self.global_step,
                            # learning_rate=self.config["learning_rate"],
                            learning_rate=self.lr,
                            beta1=self.config["adam_beta_1"],
                            beta2=self.config["adam_beta_2"],
                            epsilon=self.config["adam_epsilon"],
                            clip_value=self.config["clip_grad_value"],
                        )

        # Initializer
        with tf.variable_scope("initializer") as scope:
            # tf.trainable_variables() or tf.global_variables()
            self.init_global_op = tf.variables_initializer(
                tf.global_variables())
            self.init_local_op = tf.variables_initializer(tf.local_variables())

        # Saver for storing variables
        self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
        self.best_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)

        # Initialize variables
        self.run([self.init_global_op, self.init_local_op])

        # Restore variables (if possible)
        is_restore = False
        if use_best:
            if os.path.exists(self.best_ckpt_path):
                if os.path.isfile(
                        os.path.join(self.best_ckpt_path, "checkpoint")):
                    # Restore the last checkpoint
                    latest_checkpoint = tf.train.latest_checkpoint(
                        self.best_ckpt_path)
                    self.saver.restore(self.sess, latest_checkpoint)
                    logger.info("Best model restored from {}".format(
                        latest_checkpoint))
                    is_restore = True
        else:
            if os.path.exists(self.checkpoint_path):
                if os.path.isfile(
                        os.path.join(self.checkpoint_path, "checkpoint")):
                    # Restore the last checkpoint
                    latest_checkpoint = tf.train.latest_checkpoint(
                        self.checkpoint_path)
                    self.saver.restore(self.sess, latest_checkpoint)
                    logger.info(
                        "Model restored from {}".format(latest_checkpoint))
                    is_restore = True
        if not is_restore:
            logger.info("Model started from random weights")