Esempio n. 1
0
def main():
  lr = 0.001
  input_size = 50
  output_size = 10
  n_iterations = 100

  # Both input and "ground truth" are random vectors
  x = np.random.random(input_size)
  y = np.random.random(output_size)

  # Randomly initialize neural network weights
  #weights = to_value(np.random.random((input_size, output_size)))
  nn = MLP(input_size, output_size, [5, 10, 20])
  print(nn.layers[0])

  losses = []
  for i in tqdm(range(100)):
    y_pred = nn(x)
    loss = np.sum((y - y_pred) * (y - y_pred))
    losses.append(loss.data)

    loss.backward()
    for p in nn.parameters():
      p.data -= lr * p.grad

    nn.zero_grad()

  plt.plot(losses)
  plt.ylabel('Loss')
  plt.xlabel('Iteration')
  plt.title('Multilayer perceptron fitting random noise')
  plt.show()
Esempio n. 2
0
    def __init__(self, generator=MLP(), discriminator=MLP()):
        super().__init__()

        if generator != None and discriminator != None:
            self.generator = generator
            self.discriminator = discriminator
            self.layers = self.generator.layers + self.discriminator.layers
            self.generator.loss = CrossEntropy()
            self.discriminator.loss = CrossEntropy()
Esempio n. 3
0
    def __init__(self, input_dim, n_actions, gamma=0.9):
        self.input_dim = input_dim
        self.n_actions = n_actions
        self.gamma = gamma

        self.model = MLP(input_dim, [32, 32], n_actions)
        self.optim = optim.Adam(self.model.parameters(), lr=1e-2)

        self.action_reward = []
Esempio n. 4
0
 def __init__(self, encoder=MLP(), decoder=MLP(), noise=None):
     """
     An Autoencoder consists of an Encoder network and a a Decoder network.
     In the constructor merged these two networks.
     """
     super().__init__()
     self.layers += encoder.layers + decoder.layers
     self.encoder = encoder
     self.decoder = decoder
     self.noise = noise
Esempio n. 5
0
    def __init__(self,
                 in_channels,
                 num_classes,
                 num_seg_classes,
                 stem_channels=(64, 128, 128),
                 local_channels=(512, 2048),
                 cls_channels=(256, 256),
                 seg_channels=(256, 256, 128),
                 dropout_prob_cls=0.3,
                 dropout_prob_seg=0.2,
                 with_transform=True):
        """

        Args:
           in_channels (int): the number of input channels
           out_channels (int): the number of output channels
           stem_channels (tuple of int): the numbers of channels in stem feature extractor
           local_channels (tuple of int): the numbers of channels in local mlp
           cls_channels (tuple of int): the numbers of channels in classification mlp
           seg_channels (tuple of int): the numbers of channels in segmentation mlp
           dropout_prob_cls (float): the probability to dropout in classification mlp
           dropout_prob_seg (float): the probability to dropout in segmentation mlp
           with_transform (bool): whether to use TNet to transform features.

        """
        super(PointNetPartSeg, self).__init__()

        self.in_channels = in_channels
        self.num_classes = num_classes
        self.num_seg_classes = num_seg_classes

        # stem
        self.stem = Stem(in_channels, stem_channels, with_transform=with_transform)
        self.mlp_local = SharedMLP(stem_channels[-1], local_channels)

        # classification
        # Notice that we apply dropout to each classification mlp.
        self.mlp_cls = MLP(local_channels[-1], cls_channels, dropout=dropout_prob_cls)
        self.cls_logit = nn.Linear(cls_channels[-1], num_classes, bias=True)

        # part segmentation
        # Notice that the original repo concatenates global feature, one hot class embedding,
        # stem features and local features. However, the paper does not use last local feature.
        # Here, we follow the released repo.
        in_channels_seg = local_channels[-1] + num_classes + sum(stem_channels) + sum(local_channels)
        self.mlp_seg = SharedMLP(in_channels_seg, seg_channels[:-1], dropout=dropout_prob_seg)
        self.conv_seg = Conv1d(seg_channels[-2], seg_channels[-1], 1)
        self.seg_logit = nn.Conv1d(seg_channels[-1], num_seg_classes, 1, bias=True)

        self.init_weights()
Esempio n. 6
0
    def load(self, name):
        modelDir = f"./models/{name}"

        self.encoder = MLP()
        self.decoder = MLP()
        self.decoder.loss = MSE()

        # load encoder and decoder
        for name, model in [("encoder", self.encoder),
                            ("decoder", self.decoder)]:
            layerDir = [
                dir for dir in os.listdir(modelDir)
                if os.path.isdir(os.path.join(modelDir, dir)) and name in dir
            ]
            layerDir.sort(key=lambda x: int(x.strip(f"{name}_layer")))

            for dir in layerDir:
                layerFolder = os.path.join(modelDir, dir)
                if "dense.json" in os.listdir(layerFolder):
                    # this is a dense layer
                    newLayer = Dense()
                    newLayer.load(layerFolder)
                    model.layers.append(newLayer)

        # load aditional information about sampler
        with open(f"{modelDir}/sampler.json", "r") as file:
            data = json.load(file)

        inputDim = data["inputDim"]
        outputDim = data["outputDim"]
        self.sampler = Sampler(inputDim, outputDim)

        # load mean and logvar layer
        self.sampler.mean = Dense()
        self.sampler.mean.load(os.path.join(modelDir, f"sampler_mean"))
        self.sampler.logVar = Dense()
        self.sampler.logVar.load(os.path.join(modelDir, f"sampler_logvar"))

        self.layers = self.encoder.layers + [
            self.sampler.mean, self.sampler.logVar
        ] + self.decoder.layers
Esempio n. 7
0
def init_model():
    # Select the model
    if FLAGS.model == 'mlp':
        model = MLP()
    elif FLAGS.model == 'shallow':
        model = Shallow_CNN()
    elif FLAGS.model == 'deep':
        model = Deep_CNN()
    else:
        raise ValueError('--model should be "mlp", "shallow", or "deep"')

    return model
Esempio n. 8
0
    def _init_model(self, model_name):
        # Select the model
        if model_name == 'mlp':
            model = MLP()
        elif model_name == 'shallow':
            model = Shallow_CNN()
        elif model_name == 'deep':
            model = Deep_CNN()
        else:
            raise ValueError('--model should be "shallow" or "deep"')

        return model
Esempio n. 9
0
def get_evals(approx):
    if approx == True:
        model = MLP(params.neural_net_hiddens)
        model.load_state_dict(torch.load('./model.pth'))
        model.eval()
    # Make data.
    X = np.arange(params.x_0[0] - params.delta_0,
                  params.x_0[0] + params.delta_0, 0.05)
    Y = np.arange(params.x_0[1] - params.delta_0,
                  params.x_0[0] + params.delta_0, 0.05)
    X, Y = np.meshgrid(X, Y)

    Z = []
    for j in range(len(X)):
        for i in range(len(X[0])):
            # your loop order was backwards
            point = np.array([[X[j][i], Y[j][i]]], dtype=np.float32)
            inp = torch.from_numpy(point)
            if approx == False:
                val = f(point)
            else:
                val = model(inp).data.numpy()
            Z.append(val)

    Z = np.array(Z).reshape(X.shape)
    return X, Y, Z
Esempio n. 10
0
    def __init__(self, embedding, encoder, encoder_type, mlp_input,
                 mlp_arc_hidden, mlp_lab_hidden, mlp_dropout, num_labels,
                 criterion):
        super(BiAffineParser, self).__init__()

        self.embedding = embedding
        self.encoder = encoder

        self.encoder_type = encoder_type

        # Arc MLPs
        self.arc_mlp_h = MLP(mlp_input, mlp_arc_hidden, 2, 'ReLU', mlp_dropout)
        self.arc_mlp_d = MLP(mlp_input, mlp_arc_hidden, 2, 'ReLU', mlp_dropout)
        # Label MLPs
        self.lab_mlp_h = MLP(mlp_input, mlp_lab_hidden, 2, 'ReLU', mlp_dropout)
        self.lab_mlp_d = MLP(mlp_input, mlp_lab_hidden, 2, 'ReLU', mlp_dropout)

        # BiAffine layers
        self.arc_biaffine = BiAffine(mlp_arc_hidden, 1)
        self.lab_biaffine = BiAffine(mlp_lab_hidden, num_labels)

        # Loss criterion
        self.criterion = criterion()
Esempio n. 11
0
 def __init__(self, layer_num=2, hidden_dim=200):
     super().__init__()
     self.action_size = 3
     self.state_size = 768 * 2
     self.memory = deque(maxlen=2000)
     self.gamma = 0.95
     self.epsilon = 0.900
     self.epsilon_min = 0.03
     self.epsilon_decay = 0.995
     self.temperature = 768
     self.selection_epsilon = 0.900
     self.selection_epsilon_min = 0.03
     self.selection_epsilon_decay = 0.995
     self.encoder = LocalGlobalEncoder()
     self.mlp = MLP(in_dim=self.state_size,
                    hid_dim=hidden_dim,
                    out_dim=self.action_size,
                    layer_num=layer_num)
     self.to(DEVICE)
Esempio n. 12
0
class Policy(object):
    def __init__(self, input_dim, n_actions, gamma=0.9):
        self.input_dim = input_dim
        self.n_actions = n_actions
        self.gamma = gamma

        self.model = MLP(input_dim, [32, 32], n_actions)
        self.optim = optim.Adam(self.model.parameters(), lr=1e-2)

        self.action_reward = []

    def get_action(self, observation, stochastic=True):
        pred = self.model(observation)

        if stochastic:
            return pred.multinomial()
        return pred[0].argmax()

    def update(self):
        R = 0
        rewards = []
        for action, reward in self.action_reward:
            R = reward + self.gamma * R
            rewards.insert(0, R)

        rewards = T.Tensor(rewards)
        rewards = (rewards - rewards.mean()) / (rewards.std() +
                                                np.finfo(np.float32).eps)

        actions = []
        for (action, _), reward in zip(self.action_reward, rewards):
            action.reinforce(reward)
            actions.append(action)

        self.optim.zero_grad()
        T.autograd.backward(actions, [None for _ in actions])
        self.optim.step()

        self.action_reward = []

    def record(self, action, reward):
        self.action_reward.append((action, reward))
Esempio n. 13
0
def main():

    # Learning the XOR
    # (obs.: sensitive to standard dev. we use to init. weights)
    # X = np.array([[.1, .1], [.1, .9], [.9, .1], [.9, .9]], dtype=float)
    # Y = np.array([[.1], [.9], [.9], [.1]], dtype=float)
    # xor = MLP(learning_rate=1.0, layers=[2, 2, 1], loss=MeanSquaredError, sigma=0.05)
    # perf_xor = xor.fit(X, Y)
    # plot_perf(perf_xor, 'perf_xor')

    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bench_name",
        type=str,
        help="To choose the task. Available: monks-1, monks-2, monks-3."
    )
    parser.add_argument(
        "--do_grid_search",
        action="store_true",
        help="Wheter to do hyper-params search via grid-search."
    )
    parser.add_argument(
        "--lr",
        default=1e-1,
        type=float,
        help="The learning rate. Default: 1e-1.",
    )
    parser.add_argument(
        "--momentum",
        default=0.0,
        type=float,
        help="The momentum. Default: 0.0.",
    )
    parser.add_argument(
        "--reg",
        default=0.0,
        type=float,
        help="The regularization term. Default: 0.0.",
    )
    parser.add_argument(
        "--max_epochs",
        default=100,
        type=int,
        help="The maximum number of epochs.",
    )
    parser.add_argument(
        "--sigma",
        default=1.0,
        type=float,
        help="To init weights with normal distribution N(mu, sigma), and scale sigma.",
    )
    parser.add_argument(
        "--mu",
        default=0.0,
        type=float,
        help="To init weights with normal distribution N(mu, sigma), and center mu.",
    )
    parser.add_argument(
        '--layers',
        nargs='+',
        help='The layers\' inputs. E.g. n_input n_hid_i n_hid_k n_class, where n_input is the size of the input to the MLP,\
		n_hid_j is the size of hidden layers, and n_class is the size of last layer for regression/classification tasks.'
    )
    parser.add_argument(
        "--activation",
        default='Linear',
        type=str,
        help="The activation function. Available: Linear, Sigmoid."
    )
    parser.add_argument(
        "--activation_last_layer",
        default='Sigmoid',
        type=str,
        help="The activation function to be applied after the classification or regression layer. Available: Linear, Sigmoid."
    )
    parser.add_argument(
        "--task",
        type=str,
        help="The type of task to be solved. Available: classification, regression."
    )
    parser.add_argument(
        "--verbose",
        default='no',
        type=str,
        help="If output in verbose mode."
    )
    parser.add_argument(
        "--debug_interval",
        default=100,
        type=int,
        help="To output training info every debug_interval epochs."
    )
    parser.add_argument(
        "--do_early_stopping",
        action="store_true",
        help="Wheter to do early stopping."
    )

    args = parser.parse_args()

    X_train, Y_train = retrieveSamplesFromMonk(
        f"monks-data/{args.bench_name}.train")
    X_test, Y_test = retrieveSamplesFromMonk(
        f"monks-data/{args.bench_name}.test")

    logger.info(f"Training set len = {len(X_train)}")
    logger.info(f"Test set len = {len(X_test)}")

    logger.warning(
        "do_grid_search: %s",
        bool(args.do_grid_search)
    )

    if args.do_grid_search:
        n_input, n_output = 17, 1
        hyperspace = {
            'learning_rate': [i/10 for i in range(1, 10)],
            'momentum': [i/10 for i in range(1, 10)],
            'lambda': [0.0],  # [10**(-i) for i in range(1,6)],
            'topology': [[n_input, 2**j, n_output] for j in range(1, 6)]
        }
        logger.info('Starting hyper-parameter grid-search.')
        start = timer()
        monk = HyperOptimizer(
            hyperspace,
            X_train,
            Y_train,
            loss=MeanSquaredError,
            p=.70,
            k=5,
            scoring=['valid_err', 'test_err', 'accuracy'],
            task=args.task,
            X_ts=X_test,
            Y_ts=Y_test
        )
        monk.hoptimize()
        end = timer()
        logger.info(
            f'Grid-search for task {args.bench_name} has taken = {np.ceil((end-start)*1000)} ms')

    monk = MLP(
        learning_rate=args.lr,
        momentum=args.momentum,
        lamda=args.reg,
        max_epochs=args.max_epochs,
        layers=[int(l) for l in args.layers],
        task=args.task,
        verbose=args.verbose,
        activation=Linear if args.activation == 'Linear' else Sigmoid,
        activation_out=Linear if args.activation_last_layer == 'Linear' else Sigmoid,
        do_early_stopping=args.do_early_stopping,
        debug_interval=args.debug_interval
    )

    logger.info(f'Starting training for task {args.bench_name}.')
    start = timer()
    perf_monk = monk.fit(X_train, Y_train)
    end = timer()
    logger.info(
        f'Training for task {args.bench_name} has taken = {np.ceil((end-start)*1000)} ms')

    test_err = monk.score(X_test, Y_test)
    logger.info(f'Test error = {test_err}')

    plot_perf(perf_monk, f'perf_{args.bench_name}')
    plot_accuracy(perf_monk, f'acc_{args.bench_name}')
Esempio n. 14
0
def accuracy(predictions, label):
    total_corr = 0
    index = 0
    for c in predictions.flatten():
        if (c.item() > 0.5):
            r = 1.0
        else:
            r = 0.0
        if (r == label[index].item()):
            total_corr += 1
        index += 1
    return (total_corr / len(label))


# Takes as input states (9 inputs), and outputs Q_value(a|s) for all possible a
Qnet = MLP()
# Target net is same as Qnet except is only updated every n runs
Tnet = MLP()

# MDP Hyperparams
numep = 10
# Agent can make at MOST 5 actions before forced termination
numt = 5
epsilon = 0.90

# Episode Loop
for ep in range(numep):
    print('new game')
    # Initialize tictactoe game
    x = tictactoe()
    terminate = False
Esempio n. 15
0
                    newLayer.load(layerFolder)
                    model.layers.append(newLayer)

        self.layers = self.generator.layers + self.discriminator.layers


if __name__ == "__main__":
    dataset = Dataset(name="mnist",
                      train_size=60000,
                      test_size=10000,
                      batch_size=128)
    LATENT_SIZE = 28 * 28
    # set the learning rate and optimizer for training
    optimizer = Adam(0.0002, 0.5)

    generator = MLP()
    generator.addLayer(
        Dense(inputDim=LATENT_SIZE,
              outputDim=256,
              activation=LeakyReLU(0.2),
              optimizer=optimizer))
    generator.addLayer(
        Dense(inputDim=256,
              outputDim=512,
              activation=LeakyReLU(0.2),
              optimizer=optimizer))
    generator.addLayer(
        Dense(inputDim=512,
              outputDim=1024,
              activation=LeakyReLU(0.2),
              optimizer=optimizer))
Esempio n. 16
0
from nn import MLP
from datasets import BreastCancer
import matplotlib.pyplot as plt

x_train, y_train, x_test, y_test, _ = BreastCancer.load_data(pp='mms')

# Training
in_shape = (519, 30
            )  # input format -> (number_of_samples, number_of_attributes)
layers = (30, 30, 1)  # Three Layers with 30-30-1 neurons
functions = ('relu', 'relu', 'sigmoid')  # Activation function of each layer

epochs = 300
model = MLP(input_shape=in_shape,
            layers=layers,
            activations=functions,
            initializer='he')
history = model.run(x_train, y_train, epochs=epochs, batch_size=32)

# Testing
prediction = model.predict(x_test)

# Plotting the Loss
plt.plot(range(epochs), history)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
Esempio n. 17
0
def crossValidate(data, meta, folds, topology, iterations, weights, graph=None):
    "k-fold cross validation"
    if folds <= 1:
        raise Exception("Cross validation folds must be > 1")
    averageError = 0.0
    for counter, (training, validation) in enumerate(
        crossValidateIndices(items=range(data.shape[0]), k=folds, randomize=True)
    ):
        # setup training and validation matricies
        train = data.ix[training].reset_index(drop=True)
        validate = data.ix[validation].reset_index(drop=True)
        trainingFeatures = train.drop(meta.categoricalLabelColumns, axis=1)  # remove output columns
        validationFeatures = validate.drop(meta.categoricalLabelColumns, axis=1)  # remove output columns
        trainingLabels = train[meta.categoricalLabelColumns]  # use only output columns
        validationLabels = validate[meta.categoricalLabelColumns]  # use only output columns

        # setup MLP and start training
        li(
            "Fold {2}/{3} - Training with {1}/{4} rows ({0} epochs)".format(
                iterations, trainingFeatures.shape[0], counter + 1, folds, data.shape[0]
            )
        )
        mlp = MLP()
        mlp.trainingIterations = iterations
        mlp.initalWeightsMultiplier = weights
        mlp.features = (
            trainingFeatures.values
        )  # convert from pandas dataframe to numpy arrays. they are faster for the computationally intensive training phase.
        mlp.labels = trainingLabels.values
        mlp.validationFeatures = validationFeatures  # for validation, send in pandas dataframes.
        mlp.validationLabels = validationLabels
        mlp.meta = meta
        mlp.topology = topology
        if graph:
            mlp.trackLearning = True
        mlp.setupHiddenLayers()
        mlp.train()

        if graph:
            li("Plotting Learning to file '{0}'".format(graph))
            mlp.plotLearning(graph)

        # validate model
        li(
            "Fold {0}/{1} - Testing with {2}/{3} rows".format(
                counter + 1, folds, validationFeatures.shape[0], data.shape[0]
            )
        )
        error = mlp.validateModel(printToScreen=True)
        averageError += error

    averageError = averageError / folds
    li("Average error across all folds: {0}".format(averageError))
    return averageError
Esempio n. 18
0
class PointNetPartSeg(nn.Module):
    """PointNet for part segmentation

    References:
        https://github.com/charlesq34/pointnet/blob/master/part_seg/pointnet_part_seg.py

    """

    def __init__(self,
                 in_channels,
                 num_classes,
                 num_seg_classes,
                 stem_channels=(64, 128, 128),
                 local_channels=(512, 2048),
                 cls_channels=(256, 256),
                 seg_channels=(256, 256, 128),
                 dropout_prob_cls=0.3,
                 dropout_prob_seg=0.2,
                 with_transform=True):
        """

        Args:
           in_channels (int): the number of input channels
           out_channels (int): the number of output channels
           stem_channels (tuple of int): the numbers of channels in stem feature extractor
           local_channels (tuple of int): the numbers of channels in local mlp
           cls_channels (tuple of int): the numbers of channels in classification mlp
           seg_channels (tuple of int): the numbers of channels in segmentation mlp
           dropout_prob_cls (float): the probability to dropout in classification mlp
           dropout_prob_seg (float): the probability to dropout in segmentation mlp
           with_transform (bool): whether to use TNet to transform features.

        """
        super(PointNetPartSeg, self).__init__()

        self.in_channels = in_channels
        self.num_classes = num_classes
        self.num_seg_classes = num_seg_classes

        # stem
        self.stem = Stem(in_channels, stem_channels, with_transform=with_transform)
        self.mlp_local = SharedMLP(stem_channels[-1], local_channels)

        # classification
        # Notice that we apply dropout to each classification mlp.
        self.mlp_cls = MLP(local_channels[-1], cls_channels, dropout=dropout_prob_cls)
        self.cls_logit = nn.Linear(cls_channels[-1], num_classes, bias=True)

        # part segmentation
        # Notice that the original repo concatenates global feature, one hot class embedding,
        # stem features and local features. However, the paper does not use last local feature.
        # Here, we follow the released repo.
        in_channels_seg = local_channels[-1] + num_classes + sum(stem_channels) + sum(local_channels)
        self.mlp_seg = SharedMLP(in_channels_seg, seg_channels[:-1], dropout=dropout_prob_seg)
        self.conv_seg = Conv1d(seg_channels[-2], seg_channels[-1], 1)
        self.seg_logit = nn.Conv1d(seg_channels[-1], num_seg_classes, 1, bias=True)

        self.init_weights()

    def forward(self, data_batch):
        x = data_batch["points"]
        cls_label = data_batch["cls_label"]
        num_points = x.shape[2]
        end_points = {}

        # stem
        stem_feature, end_points_stem = self.stem(x)
        end_points["trans_input"] = end_points_stem["trans_input"]
        end_points["trans_feature"] = end_points_stem["trans_feature"]
        stem_features = end_points_stem["stem_features"]

        # mlp for local features
        local_features = []
        x = stem_feature
        for ind, mlp in enumerate(self.mlp_local):
            x = mlp(x)
            local_features.append(x)

        # max pool over points
        global_feature, max_indices = torch.max(x, 2)  # (batch_size, local_channels[-1])
        end_points['key_point_inds'] = max_indices

        # classification
        x = global_feature
        x = self.mlp_cls(x)
        cls_logit = self.cls_logit(x)

        # segmentation
        global_feature_expand = global_feature.unsqueeze(2).expand(-1, -1, num_points)
        with torch.no_grad():
            I = torch.eye(self.num_classes, dtype=global_feature.dtype, device=global_feature.device)
            one_hot = I[cls_label]  # (batch_size, num_classes)
            one_hot_expand = one_hot.unsqueeze(2).expand(-1, -1, num_points)

        x = torch.cat(stem_features + local_features + [global_feature_expand, one_hot_expand], dim=1)
        x = self.mlp_seg(x)
        x = self.conv_seg(x)
        seg_logit = self.seg_logit(x)

        preds = {
            "cls_logit": cls_logit,
            "seg_logit": seg_logit
        }
        preds.update(end_points)

        return preds

    def init_weights(self):
        self.mlp_local.init_weights(xavier_uniform)
        self.mlp_cls.init_weights(xavier_uniform)
        self.mlp_seg.init_weights(xavier_uniform)
        self.conv_seg.init_weights(xavier_uniform)
        nn.init.xavier_uniform_(self.cls_logit.weight)
        nn.init.zeros_(self.cls_logit.bias)
        nn.init.xavier_uniform_(self.seg_logit.weight)
        nn.init.zeros_(self.seg_logit.bias)
        # Set batch normalization to 0.01 as default
        set_bn(self, momentum=0.01)
Esempio n. 19
0
def crossValidate(data, meta, folds, topology, iterations, weights, graph=None):
    "k-fold cross validation"
    if folds <= 1:
        raise Exception("Cross validation folds must be > 1")
    averageError = 0.0
    for counter, (training, validation) in enumerate(crossValidateIndices(items=range(data.shape[0]), k=folds, randomize=True)):
        # setup training and validation matricies
        train               = data.ix[training].reset_index(drop=True)
        validate            = data.ix[validation].reset_index(drop=True)
        trainingFeatures    = train.drop(meta.categoricalLabelColumns, axis=1)  # remove output columns
        validationFeatures  = validate.drop(meta.categoricalLabelColumns, axis=1)  # remove output columns
        trainingLabels      = train[meta.categoricalLabelColumns]  # use only output columns
        validationLabels    = validate[meta.categoricalLabelColumns]  # use only output columns

        #setup MLP and start training
        li("Fold {2}/{3} - Training with {1}/{4} rows ({0} epochs)".format(iterations, trainingFeatures.shape[0], counter + 1, folds, data.shape[0]))
        mlp                          = MLP()
        mlp.trainingIterations       = iterations
        mlp.initalWeightsMultiplier  = weights
        mlp.features                 = trainingFeatures.values  # convert from pandas dataframe to numpy arrays. they are faster for the computationally intensive training phase.
        mlp.labels                   = trainingLabels.values
        mlp.validationFeatures       = validationFeatures  # for validation, send in pandas dataframes.
        mlp.validationLabels         = validationLabels
        mlp.meta                     = meta
        mlp.topology                 = topology
        if graph:
            mlp.trackLearning        = True
        mlp.setupHiddenLayers()
        mlp.train()

        if graph:
            li("Plotting Learning to file '{0}'".format(graph))
            mlp.plotLearning(graph)

        #validate model
        li("Fold {0}/{1} - Testing with {2}/{3} rows".format(counter + 1, folds, validationFeatures.shape[0], data.shape[0]))
        error = mlp.validateModel(printToScreen=True)
        averageError += error

    averageError = averageError / folds
    li("Average error across all folds: {0}".format(averageError))
    return averageError
Esempio n. 20
0
num_layers = 2


network = "RBF"
if network == "RBF":
    net = RBF(input_size, output_size, hidden_size)
    # training of the centres and variances
    X = torch.randn(train_size/2,input_size)
    Y = 2*X
    loss_hist = fit_model(net,X,Y,5)
    # training of the weights
    X = torch.randn(train_size/2,input_size)
    Y = 2*X
    loss_hist = fit_model(net,X,Y,5)
else
    net = MLP(input_size, output_size, num_layers, hidden_size)
    X = torch.randn(train_size,input_size)
    Y = 2*X 
    loss_hist = fit_model(net,X,Y,5)
# In[3]:

# You should see loss get to effectively zero
loss_hist = fit_model(net,X,Y,5)
plt.plot(loss_hist)


# In[4]:


# test error should be close to zero, MLP got to ~.0002 after 5 epochs of training on 4000 examples
X_test = torch.randn(train_size,input_size)