Esempio n. 1
0
def test_y_range():
    """Tests whether setting a y range works correctly"""
    for _ in range(100):
        val1 = random.random() - 3.0*random.random()
        val2 = random.random() + 2.0*random.random()
        lower_bound = min(val1, val2)
        upper_bound = max(val1, val2)
        CNN_instance = CNN(layers_info=[["conv", 2, 2, 1, 2], ["adaptivemaxpool", 2, 2], ["linear", 5]],
                           hidden_activations="relu", y_range=(lower_bound, upper_bound),
                           initialiser="xavier", input_dim=(1, 20, 20))
        random_data = torch.randn((10, 1, 20, 20))
        out = CNN_instance.forward(random_data)
        assert torch.sum(out > lower_bound).item() == 10*5, "lower {} vs. {} ".format(lower_bound, out)
        assert torch.sum(out < upper_bound).item() == 10*5, "upper {} vs. {} ".format(upper_bound, out)
Esempio n. 2
0
def test_check_input_data_into_forward_once():
    """Tests that check_input_data_into_forward_once method only runs once"""
    CNN_instance = CNN(layers_info=[["conv", 2, 2, 1, 2], ["adaptivemaxpool", 2, 2], ["linear", 6]],
                       hidden_activations="relu", input_dim=(4, 2, 5),
                       output_activation="relu", initialiser="xavier")

    data_not_to_throw_error = torch.randn((1, 4, 2, 5))
    data_to_throw_error = torch.randn((1, 2, 20, 20))

    with pytest.raises(AssertionError):
        CNN_instance.forward(data_to_throw_error)
    with pytest.raises(RuntimeError):
        CNN_instance.forward(data_not_to_throw_error)
        CNN_instance.forward(data_to_throw_error)
Esempio n. 3
0
def test_output_activation():
    """Tests whether network outputs data that has gone through correct activation function"""
    RANDOM_ITERATIONS = 20
    input_dim = (5, 100, 100)
    for _ in range(RANDOM_ITERATIONS):
        data = torch.randn((1, *input_dim))
        CNN_instance = CNN(layers_info=[["conv", 2, 2, 1, 2], ["adaptivemaxpool", 2, 2], ["linear", 50]],
                           hidden_activations="relu", input_dim=input_dim,
                           output_activation="relu", initialiser="xavier")
        out = CNN_instance.forward(data)
        assert all(out.squeeze() >= 0)

        CNN_instance = CNN(layers_info=[["conv", 2, 20, 1, 0], ["linear", 5]],
                           hidden_activations="relu",  input_dim=input_dim,
                           output_activation="relu", initialiser="xavier")
        out = CNN_instance.forward(data)
        assert all(out.squeeze() >= 0)

        CNN_instance = CNN(layers_info=[["conv", 5, 20, 1, 0], ["linear", 5]],
                           hidden_activations="relu", input_dim=input_dim,
                           output_activation="relu", initialiser="xavier")
        out = CNN_instance.forward(data)
        assert all(out.squeeze() >= 0)

        CNN_instance = CNN(layers_info=[["conv", 5, 20, 1, 0], ["linear",  22]],
                           hidden_activations="relu", input_dim=input_dim,
                           output_activation="sigmoid", initialiser="xavier")
        out = CNN_instance.forward(data)
        assert all(out.squeeze() >= 0)
        assert all(out.squeeze() <= 1)
        assert round(torch.sum(out.squeeze()).item(), 3) != 1.0

        CNN_instance = CNN(layers_info=[["conv", 2, 2, 1, 2], ["adaptivemaxpool", 2, 2], ["linear", 5]],
                           hidden_activations="relu", input_dim=input_dim,
                           output_activation="softmax", initialiser="xavier")
        out = CNN_instance.forward(data)
        assert all(out.squeeze() >= 0)
        assert all(out.squeeze() <= 1)
        assert round(torch.sum(out.squeeze()).item(), 3) == 1.0


        CNN_instance = CNN(layers_info=[["conv", 2, 2, 1, 2], ["adaptivemaxpool", 2, 2], ["linear", 5]],
                           hidden_activations="relu", input_dim=input_dim,
                           initialiser="xavier")
        out = CNN_instance.forward(data)
        assert not all(out.squeeze() >= 0)
        assert not round(torch.sum(out.squeeze()).item(), 3) == 1.0