# ========================== # VISUALIZE IMAGE # ========================== # pl.gray() # pl.matshow(img_arr_gray) # pl.show() # ========================== # RETRIEVE AND SETTING WEIGHTS FROM FILE # ========================== Theta1_filename = 'Theta1' + postfix_filename Theta2_filename = 'Theta2' + postfix_filename # Read the array from disk Theta1_raw = np.loadtxt(Theta1_filename) Theta2_raw = np.loadtxt(Theta2_filename) # re-set the weights from file Theta1 = np.matrix(Theta1_raw.reshape((hidden_units, (_input_units + 1)))) Theta2 = np.matrix(Theta2_raw.reshape((_output_units, (hidden_units + 1)))) # ========================== # TESTING PHASE (UNKNOWN IMAGES) # ========================== print("Testing phase (...)") h = nnf.forward_propagate(input_img, Theta1, Theta2, output_only=True) # Returns the indices of the maximum values along an axis and creates an array y_testing_predicted = np.array(np.argmax(h, axis=1)) y_predicted_testing_norm = np.squeeze(np.asarray(y_testing_predicted)) print("Prediction: " + str(y_predicted_testing_norm))
}) # (fmin.x) are the Theta values which minimize the function Theta1 = np.matrix( np.reshape(fmin.x[:hidden_units * (_input_units + 1)], (hidden_units, (_input_units + 1)))) Theta2 = np.matrix( np.reshape(fmin.x[hidden_units * (_input_units + 1):], (_output_units, (hidden_units + 1)))) # ========================== # TRAINING ACCURACY # ========================== print("Calculating the training accuracy (...)") h = nnf.forward_propagate(X, Theta1, Theta2, output_only=True) # Returns the indices of the maximum values along an axis and creates an array y_training_predicted = np.array(np.argmax(h, axis=1)) y_predicted_training_norm = np.squeeze(np.asarray(y_training_predicted)) y_training_norm = np.squeeze(np.asarray(training_outputs)) training_accuracy = nnf.get_accuracy(y_predicted_training_norm, y_training_norm) print("Accuracy: " + str(training_accuracy) + "%") # ========================== # TESTING PHASE (UNKNOWN IMAGES) # ========================== print("Testing phase (...)")