Esempio n. 1
0
def _create_variable(v, name, shape):
    # Create and initialize variables
    class Variable:
        pass

    parameter = v.type == "Parameter"
    variable_instance = None
    if parameter:
        if v.initializer.type == 'Normal':
            initializer = NormalInitializer(v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineHe' or v.initializer.type == 'NormalAffineHeForward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_forward(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineHeBackward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_backward(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineGlorot':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_glorot(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionHe' or v.initializer.type == 'NormalConvolutionHeForward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_forward(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionHeBackward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_backward(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionGlorot':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_glorot(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'Uniform':
            initializer = UniformInitializer(
                lim=[-v.initializer.multiplier, v.initializer.multiplier])
        elif v.initializer.type == 'UniformAffineGlorot':
            initializer = (lambda shape: UniformInitializer(calc_uniform_lim_glorot(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'UniformConvolutionGlorot':
            initializer = (lambda shape: UniformInitializer(calc_uniform_lim_glorot(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'Constant':
            initializer = ConstantInitializer(value=v.initializer.multiplier)
        else:
            initializer = None
        variable_instance = get_parameter_or_create(name, shape, initializer)
    else:
        # create empty variable, memory will be allocated in network.setup()
        # after network optimization
        variable_instance = nn.Variable()

    variable = Variable()
    variable.name = name
    variable.parameter = parameter
    variable.shape = shape
    variable.variable_instance = variable_instance

    return variable
Esempio n. 2
0
def _create_variable(v, name, shape):
    # Create and initialize variables
    class Variable:
        pass

    parameter = v.type == "Parameter"
    variable_instance = None
    if parameter:
        if v.initializer.type == 'Normal':
            initializer = NormalInitializer(v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineHe' or v.initializer.type == 'NormalAffineHeForward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_forward(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineHeBackward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_backward(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalAffineGlorot':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_glorot(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionHe' or v.initializer.type == 'NormalConvolutionHeForward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_forward(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionHeBackward':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_he_backward(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'NormalConvolutionGlorot':
            initializer = (lambda shape: NormalInitializer(calc_normal_std_glorot(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'Uniform':
            initializer = UniformInitializer(
                lim=[-v.initializer.multiplier, v.initializer.multiplier])
        elif v.initializer.type == 'UniformAffineGlorot':
            initializer = (lambda shape: UniformInitializer(calc_uniform_lim_glorot(
                shape[0], numpy.prod(shape[1:])))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'UniformConvolutionGlorot':
            initializer = (lambda shape: UniformInitializer(calc_uniform_lim_glorot(
                shape[1], shape[0], kernel=shape[2:]))(shape) * v.initializer.multiplier)
        elif v.initializer.type == 'Constant':
            initializer = ConstantInitializer(value=v.initializer.multiplier)
        else:
            initializer = None
        variable_instance = get_parameter_or_create(name, shape, initializer)
    else:
        # create empty variable, memory will be allocated in network.setup()
        # after network optimization
        variable_instance = nn.Variable()

    variable = Variable()
    variable.name = name
    variable.parameter = parameter
    variable.shape = shape
    variable.variable_instance = variable_instance

    return variable
Esempio n. 3
0
def conv(inp,
         outmaps,
         kernel,
         pad=None,
         stride=None,
         dilation=None,
         group=1,
         w_init=None,
         b_init=None,
         base_axis=1,
         fix_parameters=False,
         rng=None,
         with_bias=True,
         use_wscale=True,
         use_he_backward=False):
    """
    """
    # Use He backward
    if use_he_backward:
        std = calc_normal_std_he_backward(inp.shape[base_axis],
                                          outmaps,
                                          kernel=kernel)
    else:
        std = calc_normal_std_he_forward(inp.shape[base_axis],
                                         outmaps,
                                         kernel=kernel)

    # W init
    if w_init is None and use_wscale:
        # Equalized Learning Rate
        w_init = NormalInitializer(1.)
        w = get_parameter_or_create(
            "W", (outmaps, inp.shape[base_axis] / group) + tuple(kernel),
            w_init, not fix_parameters)
        w *= std
    elif w_init is None and not use_wscale:
        w_init = NormalInitializer(std)
        w = get_parameter_or_create(
            "W", (outmaps, inp.shape[base_axis] / group) + tuple(kernel),
            w_init, not fix_parameters)
    else:
        if w_init is None:
            w_init = UniformInitializer(calc_uniform_lim_glorot(
                inp.shape[base_axis], outmaps, tuple(kernel)),
                                        rng=rng)
        w = get_parameter_or_create(
            "W", (outmaps, inp.shape[base_axis] / group) + tuple(kernel),
            w_init, not fix_parameters)

    if with_bias and b_init is None:
        b_init = ConstantInitializer()
    b = None
    if with_bias:
        b = get_parameter_or_create("b", (outmaps, ), b_init,
                                    not fix_parameters)

    return F.convolution(inp, w, b, base_axis, pad, stride, dilation, group)
Esempio n. 4
0
def affine(inp,
           n_outmaps,
           base_axis=1,
           w_init=None,
           b_init=None,
           fix_parameters=False,
           rng=None,
           with_bias=True,
           use_wscale=True,
           use_he_backward=False):
    """
    """
    if not hasattr(n_outmaps, '__iter__'):
        n_outmaps = [n_outmaps]
    n_outmaps = list(n_outmaps)
    n_outmap = int(np.prod(n_outmaps))

    # Use He backward
    if use_he_backward:
        std = calc_normal_std_he_backward(inp.shape[base_axis], n_outmap)
    else:
        std = calc_normal_std_he_forward(inp.shape[base_axis], n_outmap)

    # W init
    if w_init is None and use_wscale:
        # Equalized Learning Rate
        w_init = NormalInitializer(1.)
        w = get_parameter_or_create(
            "W", [int(np.prod(inp.shape[base_axis:]))] + n_outmaps, w_init,
            not fix_parameters)
        w *= std
    elif w_init is None and not use_wscale:
        w_init = NormalInitializer(std)
        w = get_parameter_or_create(
            "W", [int(np.prod(inp.shape[base_axis:]))] + n_outmaps, w_init,
            not fix_parameters)
    else:
        if w_init is None:
            w_init = UniformInitializer(calc_uniform_lim_glorot(
                inp.shape[base_axis], n_outmaps),
                                        rng=rng)
        w = get_parameter_or_create(
            "W", [int(np.prod(inp.shape[base_axis:]))] + n_outmaps, w_init,
            not fix_parameters)

    if with_bias and b_init is None:
        b_init = ConstantInitializer()
    b = None
    if with_bias:
        b = get_parameter_or_create("b", n_outmaps, b_init, not fix_parameters)

    return F.affine(inp, w, b, base_axis)
Esempio n. 5
0
def pf_convolution(x, ochannels, kernel, stride=(1, 1), channel_last=False):
    axes = [3 if channel_last else 1]
    ichannels = x.shape[axes[0]]
    init = I.NormalInitializer(sigma=I.calc_normal_std_he_backward(
        ichannels, ochannels, kernel=kernel),
                               rng=RNG)
    pad = tuple([int((k - 1) // 2) for k in kernel])
    return PF.convolution(x,
                          ochannels,
                          kernel,
                          stride=stride,
                          pad=pad,
                          with_bias=False,
                          channel_last=channel_last,
                          w_init=init)
Esempio n. 6
0
def conv(x, planes, kernel, pad, stride, dilation, with_bias):
    inchannels = x.shape[1]
    outchannels = planes
    s = I.calc_normal_std_he_backward(inchannels, outchannels, kernel)
    w_init = I.NormalInitializer(s)
    if dilation[0] > 1:
        pad2 = dilation
    else:
        pad2 = pad
    h = PF.convolution(x,
                       planes,
                       kernel=kernel,
                       pad=pad2,
                       stride=stride,
                       dilation=dilation,
                       with_bias=with_bias,
                       w_init=w_init)

    return h