Esempio n. 1
0
 def reset(self):
     if self._shuffle:
         logger.debug('Shuffle start.')
         self._order = list(self._rng.permutation(list(range(self._size))))
         logger.debug('Shuffle end.')
     self._generation += 1
     super(CsvDataSource, self).reset()
Esempio n. 2
0
 def reset(self):
     if self._shuffle:
         logger.debug('Shuffle start.')
         self._order = list(
             numpy.random.permutation(list(range(self._size))))
         logger.debug('Shuffle end.')
     self._generation += 1
     super(CsvDataSource, self).reset()
Esempio n. 3
0
def _network(proto, default_context, batch_size, all_variables):
    network = Network()
    network.name = proto.name
    # Read Repeat Info
    network.repeat_info = {}
    for r in proto.repeat_info:
        network.repeat_info[r.id] = r.times

    network.variables = OrderedDict()

    if batch_size is None:
        network.batch_size = proto.batch_size
    else:
        network.batch_size = batch_size

    for v in proto.variable:
        for variable_index in itertools.product(*map(tuple, map(range, [network.repeat_info[id] for id in v.repeat_id]))):
            name = v.name + ''.join(['_' + v.repeat_id[index] + '[' +
                                     str(i) + ']' for index, i in enumerate(variable_index)])
            if name in all_variables:
                variable = all_variables[name]
            else:
                shape = tuple(
                    [d if d >= 1 else network.batch_size for d in v.shape.dim])
                variable = _create_variable(v, name, shape)
                all_variables[name] = variable
            network.variables[name] = variable
            logger.debug('{}'.format(
                (name, variable.shape, v.initializer.type if v.initializer.type else '-', v.initializer.multiplier)))

    network.functions = OrderedDict()
    network.function_inputs = OrderedDict()
    network.function_outputs = OrderedDict()
    network.variable_inputs = OrderedDict()
    network.variable_outputs = OrderedDict()
    for f in proto.function:
        ctx = default_context if f.context.backend == "" else context(
            f.context)

        for variable_index in itertools.product(*map(tuple, map(range, [network.repeat_info[id] for id in f.repeat_id]))):
            function, input_variable_names, output_variable_names = _create_function(
                ctx, network, f, variable_index)
            if function is not None:
                network.functions[function.name] = function
                for v_name in output_variable_names:
                    network.variable_inputs[
                        network.variables[v_name]] = [function]
                for v_name in input_variable_names:
                    if not network.variables[v_name] in network.variable_outputs:
                        network.variable_outputs[
                            network.variables[v_name]] = []
                    network.variable_outputs[
                        network.variables[v_name]].append(function)

    network.setup(optimize=True)
    return network
Esempio n. 4
0
def _network(proto, default_context, all_variables):
    network = Network()
    network.name = proto.name
    # Read Repeat Info
    network.repeat_info = {}
    for r in proto.repeat_info:
        network.repeat_info[r.id] = r.times

    network.variables = OrderedDict()
    network.batch_size = proto.batch_size
    for v in proto.variable:
        for variable_index in itertools.product(*map(tuple, map(range, [network.repeat_info[id] for id in v.repeat_id]))):
            name = v.name + ''.join(['_' + v.repeat_id[index] + '[' +
                                     str(i) + ']' for index, i in enumerate(variable_index)])
            if name in all_variables:
                variable = all_variables[name]
            else:
                shape = tuple(
                    [d if d >= 1 else network.batch_size for d in v.shape.dim])
                variable = _create_variable(v, name, shape)
                all_variables[name] = variable
            network.variables[name] = variable
            logger.debug('{}'.format(
                (name, variable.shape, v.initializer.type if v.initializer.type else '-', v.initializer.multiplier)))

    network.functions = OrderedDict()
    network.function_inputs = OrderedDict()
    network.function_outputs = OrderedDict()
    network.variable_inputs = OrderedDict()
    network.variable_outputs = OrderedDict()
    for f in proto.function:
        ctx = default_context if f.context.backend == "" else context(
            f.context)

        for variable_index in itertools.product(*map(tuple, map(range, [network.repeat_info[id] for id in f.repeat_id]))):
            function, input_variable_names, output_variable_names = _create_function(
                ctx, network, f, variable_index)
            if function is not None:
                network.functions[function.name] = function
                for v_name in output_variable_names:
                    network.variable_inputs[
                        network.variables[v_name]] = [function]
                for v_name in input_variable_names:
                    if not network.variables[v_name] in network.variable_outputs:
                        network.variable_outputs[
                            network.variables[v_name]] = []
                    network.variable_outputs[
                        network.variables[v_name]].append(function)

    network.setup(optimize=True)
    return network
Esempio n. 5
0
def resnet_imagenet(x,
                    num_classes,
                    num_layers,
                    shortcut_type,
                    test,
                    tiny=False):
    """
    Args:
        x : Variable
        num_classes : Number of classes of outputs
        num_layers : Number of layers of ResNet chosen from (18, 34, 50, 101, 152)
        shortcut_type : 'c', 'b', ''
            'c' : Use Convolution anytime
            'b' : Use Convolution if numbers of channels of input
                  and output mismatch.
            '' : Use Identity mapping if channels match, otherwise zero padding.
        test : Construct net for testing.
        tiny (bool): Tiny imagenet mode. Input image must be (3, 56, 56).
    """
    layers = {
        18: ((2, 2, 2, 2), basicblock, 1),
        34: ((3, 4, 6, 3), basicblock, 1),
        50: ((3, 4, 6, 3), bottleneck, 4),
        101: ((3, 4, 23, 3), bottleneck, 4),
        152: ((3, 8, 36, 3), bottleneck, 4)
    }

    counts, block, ocoef = layers[num_layers]
    logger.debug(x.shape)
    with nn.parameter_scope("conv1"):
        stride = (1, 1) if tiny else (2, 2)
        r = PF.convolution(x,
                           64, (7, 7),
                           pad=(3, 3),
                           stride=stride,
                           with_bias=False)
        r = F.relu(PF.batch_normalization(r, batch_stat=not test),
                   inplace=True)
        r = F.max_pooling(r, (3, 3), stride, pad=(1, 1))
    hidden = {}
    hidden['r0'] = r
    ochannels = [64, 128, 256, 512]
    strides = [1, 2, 2, 2]
    logger.debug(r.shape)
    for i in range(4):
        with nn.parameter_scope("res{}".format(i + 1)):
            r = layer(r, block, ochannels[i] * ocoef, counts[i],
                      (strides[i], strides[i]), shortcut_type, test)
        hidden['r{}'.format(i + 1)] = r
        logger.debug(r.shape)
    r = F.average_pooling(r, r.shape[-2:])
    with nn.parameter_scope("fc"):
        r = PF.affine(r, num_classes)
    logger.debug(r.shape)
    return r, hidden
Esempio n. 6
0
def resnet_cifar10(x, num_classes, cfg, test):
    """
    Args:
        x : Variable
        num_classes : Number of classes of outputs
        cfg : network configuration
    """
    layers = {
        20: ((3, 3, 3), basicblock, 1),
        32: ((5, 5, 5), basicblock, 1),
        44: ((7, 7, 7), basicblock, 1),
        56: ((9, 9, 9), basicblock, 1),
        110: ((18, 18, 18), basicblock, 1)
    }

    counts, block, ocoef = layers[cfg.num_layers]
    logger.debug(x.shape)
    with nn.parameter_scope("conv1"):
        stride = (1, 1)
        r = conv(x,
                 16, (3, 3),
                 cfg,
                 test,
                 pad=(1, 1),
                 stride=stride,
                 with_bias=False)
        r = nonl(PF.batch_normalization(r, batch_stat=not test),
                 cfg,
                 inplace=True)
    hidden = {}
    hidden['r0'] = r
    ochannels = [16, 32, 64]
    strides = [1, 2, 2]
    logger.debug(r.shape)
    for i in range(3):
        with nn.parameter_scope("res{}".format(i + 1)):
            r = layer(r, block, ochannels[i] * ocoef, counts[i],
                      (strides[i], strides[i]), cfg, test)
        hidden['r{}'.format(i + 1)] = r
        logger.debug(r.shape)
    r = F.average_pooling(r, r.shape[-2:])
    with nn.parameter_scope("fc"):
        stdv = 1. / np.sqrt(np.prod(r.shape[1:]))
        init = nn.initializer.UniformInitializer(lim=(-stdv, stdv))
        r = affi(r, num_classes, cfg, test, w_init=init, b_init=init)
        if cfg.scale_layer:
            s = get_parameter_or_create('scale_layer',
                                        shape=(1, 1),
                                        initializer=np.ones((1, 1),
                                                            dtype=np.float32),
                                        need_grad=True)
            r = s * r
    logger.debug(r.shape)
    return r, hidden
Esempio n. 7
0
    def __call__(self, pf):
        if pf.type == 'Identity':
            if self.is_required:
                if not self.is_required(pf):
                    return
            proto_network = pf.owner()
            input_name = None
            need_grad = False
            for pv_name in pf.inputs:
                pv = proto_network.variables[pv_name] \
                    if pv_name in proto_network.variables \
                    else proto_network.parameters[pv_name]
                parent = pv.parent
                required = filter(lambda k: proto_network.functions[k] != pf,
                                  pv.required)
                input_name = pv_name
                need_grad = pv.need_grad
                break

            for pv_name in pf.outputs:
                pv = proto_network.variables[pv_name]
                pv.parent = parent
                for r in pv.required:
                    r_func = proto_network.functions[r]
                    index = r_func.inputs.index(pv.name)
                    r_func.inputs[index] = input_name

                pv.required += required
                if pv_name in proto_network.outputs:
                    index = proto_network.outputs.index(pv_name)
                    proto_network.outputs[index] = input_name
                self.renamed[pv.name] = input_name
                pv.name = input_name
                pv.need_grad = need_grad
                proto_network.variables[input_name] = pv
                del proto_network.variables[pv_name]
                break

            del proto_network.functions[pf.name]
            logger.debug(
                "proto_variable:{} is deleted, proto_function:{} is deleted!".
                format(pv.name, pf.name))
Esempio n. 8
0
    def setup(self, optimize=False):
        if optimize:
            for func in self.functions.values():
                # remove identity layer
                if func.function_instance.name[0:8] == "Identity":
                    assert(len(func.inputs) == 1)
                    assert(len(func.outputs) == 1)
                    # if the identity function is not terminal (keep terminal
                    # identity function)
                    if func.outputs[0] in self.variable_outputs:
                        next_functions = self.variable_outputs[func.outputs[0]]
                        self.variable_outputs[func.inputs[0]].remove(func)
                        self.variable_outputs[
                            func.inputs[0]].extend(next_functions)
                        for next_function in next_functions:
                            next_function.inputs = [func.inputs[0] if v == func.outputs[
                                0] else v for v in next_function.inputs]
                        del self.functions[func.name]
                        del self.variables[func.outputs[0].name]

            for func in self.functions.values():
                if func.function_instance.inplace_data(0) > 0 and func.function_instance.inplace_grad(0) > 0:
                    func.outputs[0].variable_instance = func.inputs[
                        0].variable_instance

        # create variable instances
        for variable in self.variables.values():
            if variable.variable_instance.shape != variable.shape:
                if hasattr(variable.variable_instance, 'reset_shape'):
                    variable.variable_instance.reset_shape(
                        variable.shape, force=True)
                else:
                    variable.variable_instance.reshape(
                        variable.shape, force=True)

        # setup functions
        for i, func in enumerate(self.functions.values()):
            func.variable_inputs = [v.variable_instance for v in func.inputs]
            func.variable_outputs = [v.variable_instance for v in func.outputs]
            try:
                self.setup_function(func)
            except:
                print_network_traceback(self.functions.values()[
                                        min(0, i - 4):i + 1])
                raise

        # set link structure to each layer
        from itertools import chain
        for func in self.functions.values():
            func.input_functions = list(chain.from_iterable(
                [self.variable_inputs[v] for v in func.inputs if v in self.variable_inputs]))
            func.output_functions = list(chain.from_iterable(
                [self.variable_outputs[v] for v in func.outputs if v in self.variable_outputs]))
            logger.debug(func.name)
            logger.debug('  in: {}'.format(
                [f.name for f in func.input_functions]))
            logger.debug(' out: {}'.format(
                [f.name for f in func.output_functions]))
Esempio n. 9
0
    def __call__(self, x):
        '''
        Defines a ResNet-like network according to the configuration specified.

        Args:
            x:
                A Variable object which has a shape with a format
                `NCHW` if `channel_last=False` else `NHWC`.

        Returns:
            * An output `Variable` of classification layer
            * Intermediate `Variable` outputs from input and output of each
              cell

        '''

        logger.debug(x.shape)

        # First convolution
        axes = [get_channel_axis(self.channel_last)]
        with nn.parameter_scope("conv1"):
            r = pf_convolution(x,
                               64, (7, 7),
                               stride=(2, 2),
                               channel_last=self.channel_last)
            r = PF.fused_batch_normalization(r,
                                             axes=axes,
                                             batch_stat=not self.test)
            mp_opts = dict(
                ignore_border=False) if self.max_pooling_ceil_border else dict(
                    pad=(1, 1))
            r = F.max_pooling(r, (3, 3), (2, 2),
                              channel_last=self.channel_last,
                              **mp_opts)
        hidden = {}
        hidden['r0'] = r
        logger.debug(r.shape)

        # Create cells each of which consists of blocks repeatedly applied
        cell_configs = self.get_cell_configurations(self.num_layers)
        for i, (counts, ochannels, strides) in enumerate(zip(*cell_configs)):
            with nn.parameter_scope("res{}".format(i + 1)):
                r = self.cell(r, ochannels, counts, (strides, ) * 2)
            hidden['r{}'.format(i + 1)] = r
            logger.debug(r.shape)

        # Global average pooling
        pool_shape = get_spatial_shape(r.shape, self.channel_last)
        r = F.average_pooling(r, pool_shape, channel_last=self.channel_last)

        # Final classification layer
        with nn.parameter_scope("fc"):
            r = pf_affine(r, self.num_classes, channel_last=self.channel_last)
        return r, hidden
Esempio n. 10
0
    def setup(self, optimize=False):
        if optimize:
            for func in list(self.functions.values()):
                # remove identity layer
                if func.function_instance.name[0:8] == "Identity" and not func.persistent:
                    assert (len(func.inputs) == 1)
                    assert (len(func.outputs) == 1)
                    # if the identity function is not terminal (keep terminal
                    # identity function)
                    if func.outputs[0] in self.variable_outputs:
                        next_functions = self.variable_outputs[func.outputs[0]]
                        self.variable_outputs[func.inputs[0]].remove(func)
                        self.variable_outputs[
                            func.inputs[0]].extend(next_functions)
                        for next_function in next_functions:
                            next_function.inputs = [func.inputs[0] if v == func.outputs[
                                0] else v for v in next_function.inputs]
                        del self.functions[func.name]
                        del self.variables[func.outputs[0].name]

        # create variable instances
        for variable in self.variables.values():
            if variable.variable_instance.shape != variable.shape:
                if hasattr(variable.variable_instance, 'reset_shape'):
                    variable.variable_instance.reset_shape(
                        variable.shape, force=True)
                else:
                    variable.variable_instance.reshape(
                        variable.shape, force=True)

        # setup functions
        for i, func in enumerate(self.functions.values()):
            func.variable_inputs = [v.variable_instance for v in func.inputs]
            func.variable_outputs = [v.variable_instance for v in func.outputs]
            try:
                self.setup_function(func)
            except:
                print_network_traceback(list(self.functions.values())[
                                        max(0, i - 4):i + 1])
                raise

        # set link structure to each layer
        from itertools import chain
        for func in self.functions.values():
            func.input_functions = list(chain.from_iterable(
                [self.variable_inputs[v] for v in func.inputs if v in self.variable_inputs]))
            func.output_functions = list(chain.from_iterable(
                [self.variable_outputs[v] for v in func.outputs if v in self.variable_outputs]))
            logger.debug(func.name)
            logger.debug('  in: {}'.format(
                [f.name for f in func.input_functions]))
            logger.debug(' out: {}'.format(
                [f.name for f in func.output_functions]))
Esempio n. 11
0
                        '--max_epoch',
                        type=int,
                        default=3,
                        help='Max epoch to read.')
    parser.add_argument('-w',
                        '--wait',
                        type=float,
                        default=0,
                        help='Wait time for dummy data processing.')
    parser.add_argument('uri',
                        help='PATH to CSV_DATASET format file or '
                        '"MNIST_TRAIN", "MNIST_TEST", "TINY_IMAGENET_TRAIN",'
                        '"TINY_IMAGENET_VAL"')
    args = parser.parse_args()

    logger.debug('memory_cache: {}'.format(args.memory_cache))
    logger.debug('file_cache: {}'.format(args.file_cache))
    logger.debug('shuffle: {}'.format(args.shuffle))
    logger.debug('batch_size: {}'.format(args.batch_size))
    logger.debug('cache_size: {}'.format(args.cache_size))
    logger.debug('memory_size: {}'.format(args.memory_size))
    logger.debug('output: {}'.format(args.output))
    logger.debug('normalize: {}'.format(args.normalize))
    logger.debug('max_epoch: {}'.format(args.max_epoch))
    logger.debug('wait: {}'.format(args.wait))

    nnabla_config.set('DATA_ITERATOR', 'data_source_file_cache_size',
                      '{}'.format(args.cache_size))
    nnabla_config.set('DATA_ITERATOR', 'data_source_buffer_max_size',
                      '{}'.format(args.memory_size))
Esempio n. 12
0
                    '--file_cache',
                    action='store_true',
                    help='Use file cache')
parser.add_argument('-s',
                    '--cache_size',
                    type=int,
                    default=100,
                    help='Cache size (num of data).')
parser.add_argument('-o',
                    '--output',
                    type=str,
                    default='cache',
                    help='If specified, cache data will output to here.')
args = parser.parse_args()

logger.debug('file_cache: {}'.format(args.file_cache))
logger.debug('cache_size: {}'.format(args.cache_size))
logger.debug('output: {}'.format(args.output))

nnabla_config.set('DATA_ITERATOR', 'data_source_file_cache_size',
                  '{}'.format(args.cache_size))
nnabla_config.set('DATA_ITERATOR', 'cache_file_format', '.h5')

HERE = os.path.dirname(__file__)
nnabla_examples_root = os.path.join(HERE, '../../../../nnabla-examples')
mnist_examples_root = os.path.realpath(
    os.path.join(nnabla_examples_root, 'mnist-collection'))
sys.path.append(mnist_examples_root)

from mnist_data import MnistDataSource
mnist_training_cache = args.output + '/mnist_training.cache'
Esempio n. 13
0
 def get_renamed(str):
     ret_str = str.replace(']', '').replace('[', '_')
     if ret_str != str:
         logger.debug("{} --> {}".format(str, ret_str))
     return ret_str
Esempio n. 14
0
def dla_imagenet(x,
                 num_classes,
                 num_layers,
                 test,
                 residual_root=False,
                 tiny=False,
                 channel_last=False):
    """
    Args:
        x : Variable
        num_classes : Number of classes of outputs
        num_layers : Number of layers of DLA chosen from (34).
        test : Construct net for testing.
        tiny (bool): Tiny imagenet mode. Input image must be (3, 56, 56).
    """
    layers = {
        # 18: ((2, 2, 2, 2), basicblock, 1),
        34: ((1, 1, 1, 2, 2, 1), (False, False, False, True, True, True),
             basicblock)
        # 50: ((3, 4, 6, 3), bottleneck, 4),
        # 101: ((3, 4, 23, 3), bottleneck, 4),
        # 152: ((3, 8, 36, 3), bottleneck, 4)
    }

    ochannels = [16, 32, 64, 128, 256, 512]
    levels, levels_root, block = layers[num_layers]
    strides = [1, 2, 2, 2, 2, 2]
    logger.debug(x.shape)
    axes = 3 if channel_last else 1

    with nn.parameter_scope("conv1"):
        stride = (1, 1)
        r = pf_convolution(x,
                           16, (7, 7),
                           pad=(3, 3),
                           stride=stride,
                           with_bias=False,
                           channel_last=channel_last)
        r = F.relu(PF.batch_normalization(r, axes=[axes], batch_stat=not test))
    hidden = {}
    hidden['conv0'] = r
    logger.debug(r.shape)
    with nn.parameter_scope("level0"):
        r = _make_conv_level(r,
                             ochannels[0],
                             levels[0],
                             test=test,
                             stride=strides[0],
                             channel_last=channel_last)
        hidden['level0'] = r
        logger.debug(r.shape)
    with nn.parameter_scope("level1"):
        r = _make_conv_level(r,
                             ochannels[1],
                             levels[1],
                             test=test,
                             stride=strides[1],
                             channel_last=channel_last)
        hidden['level1'] = r
        logger.debug(r.shape)
    with nn.parameter_scope("level2"):
        r, _ = _make_tree_level1(r,
                                 None,
                                 block,
                                 ochannels[2],
                                 levels[2],
                                 test,
                                 levels_root[2],
                                 stride=strides[2],
                                 channel_last=channel_last)
        hidden['level2'] = r
        logger.debug(r.shape)
    with nn.parameter_scope("level3"):
        r = _make_tree_level2(r,
                              None,
                              block,
                              ochannels[3],
                              levels[3],
                              test,
                              levels_root[3],
                              stride=strides[3],
                              channel_last=channel_last)
        hidden['level3'] = r
        logger.debug(r.shape)
    with nn.parameter_scope("level4"):
        r = _make_tree_level2(r,
                              None,
                              block,
                              ochannels[4],
                              levels[4],
                              test,
                              levels_root[4],
                              stride=strides[4],
                              channel_last=channel_last)
        hidden['level4'] = r
        logger.debug(r.shape)
    with nn.parameter_scope("level5"):
        r, _ = _make_tree_level1(r,
                                 None,
                                 block,
                                 ochannels[5],
                                 levels[5],
                                 test,
                                 levels_root[5],
                                 stride=strides[5],
                                 channel_last=channel_last)
        hidden['level5'] = r
        logger.debug(r.shape)
    pool_shape = r.shape[-2:]
    if channel_last:
        pool_shape = r.shape[1:3]
    r = F.average_pooling(r, pool_shape, channel_last=channel_last)
    with nn.parameter_scope("fc"):
        r = pf_affine(r, num_classes, channel_last=channel_last)
    logger.debug(r.shape)

    return r, hidden