Esempio n. 1
1
def mnist_lenet_prediction(image, test=False):
    """
    Construct LeNet for MNIST.
    """
    image /= 255.0
    c1 = PF.convolution(image, 16, (5, 5), name='conv1')
    c1 = F.relu(F.max_pooling(c1, (2, 2)), inplace=True)
    c2 = PF.convolution(c1, 16, (5, 5), name='conv2')
    c2 = F.relu(F.max_pooling(c2, (2, 2)), inplace=True)
    c3 = F.relu(PF.affine(c2, 50, name='fc3'), inplace=True)
    c4 = PF.affine(c3, 10, name='fc4')
    return c4
Esempio n. 2
0
def test_save_load_parameters():
    v = nn.Variable([64, 1, 28, 28], need_grad=False)
    with nn.parameter_scope("param1"):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(v, 32, (3, 3))
            b = PF.batch_normalization(h, batch_stat=True)
        with nn.parameter_scope("conv2"):
            h1 = PF.convolution(v, 32, (3, 3))
            b2 = PF.batch_normalization(h1, batch_stat=True)

    for k, v in iteritems(nn.get_parameters(grad_only=False)):
        v.data.cast(np.float32)[...] = np.random.randn(*v.shape)

    with nn.parameter_scope("param1"):
        param1 = nn.get_parameters(grad_only=False)
        nn.save_parameters("tmp.h5")
        nn.save_parameters("tmp.protobuf")

    with nn.parameter_scope("param2"):
        nn.load_parameters('tmp.h5')
        param2 = nn.get_parameters(grad_only=False)

    with nn.parameter_scope("param3"):
        nn.load_parameters('tmp.protobuf')
        param3 = nn.get_parameters(grad_only=False)

    for par2 in [param2, param3]:
        assert param1.keys() == par2.keys()  # Check order
        for (n1, p1), (n2, p2) in zip(sorted(param1.items()), sorted(par2.items())):
            assert n1 == n2
            assert np.all(p1.d == p2.d)
            assert p1.data.dtype == p2.data.dtype
            assert p1.need_grad == p2.need_grad
Esempio n. 3
0
def discriminator(x, maxh=256, test=False, output_hidden=False):
    """
    Building discriminator network which maps a (B, 1, 28, 28) input to
    a (B, 1).
    """
    # Define shortcut functions
    def bn(xx):
        # Batch normalization
        return PF.batch_normalization(xx, batch_stat=not test)

    def downsample2(xx, c):
        return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)

    assert maxh / 8 > 0
    with nn.parameter_scope("dis"):
        # (1, 28, 28) --> (32, 16, 16)
        with nn.parameter_scope("conv1"):
            c1 = F.elu(bn(PF.convolution(x, maxh / 8,
                                         (3, 3), pad=(3, 3), stride=(2, 2), with_bias=False)))
        # (32, 16, 16) --> (64, 8, 8)
        with nn.parameter_scope("conv2"):
            c2 = F.elu(bn(downsample2(c1, maxh / 4)))
        # (64, 8, 8) --> (128, 4, 4)
        with nn.parameter_scope("conv3"):
            c3 = F.elu(bn(downsample2(c2, maxh / 2)))
        # (128, 4, 4) --> (256, 4, 4)
        with nn.parameter_scope("conv4"):
            c4 = bn(PF.convolution(c3, maxh, (3, 3),
                                   pad=(1, 1), with_bias=False))
        # (256, 4, 4) --> (1,)
        with nn.parameter_scope("fc1"):
            f = PF.affine(c4, 1)
    if output_hidden:
        return f, [c1, c2, c3, c4]
    return f
Esempio n. 4
0
    def res_unit(x, scope_name, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
            return h
Esempio n. 5
0
 def res_unit(x, scope):
     C = x.shape[1]
     with nn.parameter_scope(scope):
         with nn.parameter_scope('conv1'):
             h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
         with nn.parameter_scope('conv2'):
             h = F.elu(
                 bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
         with nn.parameter_scope('conv3'):
             h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
     return F.elu(F.add2(h, x, inplace=True))
Esempio n. 6
0
def mnist_lenet_feature(image, test=False):
    """
    Construct LeNet for MNIST.
    """
    c1 = F.elu(PF.convolution(image, 20, (5, 5), name='conv1'))
    c1 = F.average_pooling(c1, (2, 2))
    c2 = F.elu(PF.convolution(c1, 50, (5, 5), name='conv2'))
    c2 = F.average_pooling(c2, (2, 2))
    c3 = F.elu(PF.affine(c2, 500, name='fc3'))
    c4 = PF.affine(c3, 10, name='fc4')
    c5 = PF.affine(c4, 2, name='fc_embed')
    return c5
Esempio n. 7
0
def cifar10_resnet23_prediction(ctx, image, test=False):
    """
    Construct ResNet 23
    """
    # Residual Unit
    def res_unit(x, scope_name, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
            return h

    # Random generator for using the same init parameters in all devices
    nmaps = 64
    ncls = 10

    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
                               with_bias=False)
            h = PF.batch_normalization(h, batch_stat=not test)
            h = F.relu(h)

        h = res_unit(h, "conv2", False)    # -> 32x32
        h = res_unit(h, "conv3", True)     # -> 16x16
        h = bn_dropout(h, "bn_dropout1", test)
        h = res_unit(h, "conv4", False)    # -> 16x16
        h = res_unit(h, "conv5", True)     # -> 8x8
        h = bn_dropout(h, "bn_dropout2", test)
        h = res_unit(h, "conv6", False)    # -> 8x8
        h = res_unit(h, "conv7", True)     # -> 4x4
        h = bn_dropout(h, "bn_dropout3",  test)
        h = res_unit(h, "conv8", False)    # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
        pred = PF.affine(h, ncls)

    return pred
Esempio n. 8
0
def shortcut(x, ochannels, stride, shortcut_type, test):
    ichannels = x.shape[1]
    use_conv = shortcut_type.lower() == 'c'
    if ichannels != ochannels:
        assert (ichannels * 2 == ochannels) or (ichannels * 4 == ochannels)
        if shortcut_type.lower() == 'b':
            use_conv = True
    if use_conv:
        # Convolution does everything.
        # Matching channels, striding.
        with nn.parameter_scope("shortcut_conv"):
            x = PF.convolution(x,
                               ochannels, (1, 1),
                               stride=stride,
                               with_bias=False)
            x = PF.batch_normalization(x, batch_stat=not test)
    else:
        if stride != (1, 1):
            # Stride
            x = F.average_pooling(x, (1, 1), stride)
        if ichannels != ochannels:
            # Zero-padding to channel axis
            ishape = x.shape
            zeros = F.constant(0, (ishape[0], ochannels - ichannels) +
                               ishape[-2:])
            x = F.concatenate(x, zeros, axis=1)
    return x
Esempio n. 9
0
def resnet_model(ctx, x, inmaps=64, act=F.relu, test=False):
    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(x, inmaps, kernel=(3, 3), pad=(1, 1), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        
        h = res_unit(h, "conv2", act, False) # -> 32x32
        h = res_unit(h, "conv3", act, True)  # -> 16x16
        with nn.parameter_scope("bn0"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv4", act, False) # -> 16x16
        h = res_unit(h, "conv5", act, True)  # -> 8x8
        with nn.parameter_scope("bn1"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv6", act, False) # -> 8x8
        h = res_unit(h, "conv7", act, True)  # -> 4x4
        with nn.parameter_scope("bn2"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv8", act, False) # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
        
        pred = PF.affine(h, 10)
    return pred
Esempio n. 10
0
def conv_block(x, in_planes, out_planes, test=True):
    residual = x
    out1 = PF.batch_normalization(x, batch_stat=not test, name='bn1')
    out1 = F.relu(out1, True)
    out1 = PF.convolution(out1,
                          int(out_planes / 2),
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          name='conv1',
                          with_bias=False)

    out2 = PF.batch_normalization(out1, batch_stat=not test, name='bn2')
    out2 = F.relu(out2, True)
    out2 = PF.convolution(out2,
                          int(out_planes / 4),
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          name='conv2',
                          with_bias=False)

    out3 = PF.batch_normalization(out2, batch_stat=not test, name='bn3')
    out3 = F.relu(out3, True)
    out3 = PF.convolution(out3,
                          int(out_planes / 4),
                          kernel=(3, 3),
                          stride=(1, 1),
                          pad=(1, 1),
                          name='conv3',
                          with_bias=False)

    out3 = F.concatenate(out1, out2, out3, axis=1)

    if in_planes != out_planes:
        residual = PF.batch_normalization(residual,
                                          batch_stat=not test,
                                          name='downsample/0')
        residual = F.relu(residual, True)
        residual = PF.convolution(residual,
                                  out_planes,
                                  kernel=(1, 1),
                                  stride=(1, 1),
                                  name='downsample/2',
                                  with_bias=False)
    out3 += residual
    return out3
Esempio n. 11
0
def separable_conv_with_bn(x,
                           f,
                           stride=False,
                           aspp=False,
                           atrous_rate=1,
                           act_fn=True,
                           last_block=False,
                           end_point=False,
                           eps=1e-03,
                           out=False,
                           test=False,
                           fix_params=False):

    with nn.parameter_scope("depthwise"):
        if (stride == True):
            h = PF.depthwise_convolution(x, (3, 3),
                                         stride=(2, 2),
                                         pad=(1, 1),
                                         with_bias=False,
                                         fix_parameters=fix_params)
        elif (aspp == True):
            h = PF.depthwise_convolution(x, (3, 3),
                                         pad=(atrous_rate, atrous_rate),
                                         stride=(1, 1),
                                         dilation=(atrous_rate, atrous_rate),
                                         with_bias=False,
                                         fix_parameters=fix_params)

        else:
            h = PF.depthwise_convolution(x, (3, 3),
                                         pad=(1, 1),
                                         with_bias=False,
                                         fix_parameters=fix_params)

        h = PF.batch_normalization(h,
                                   batch_stat=not test,
                                   eps=eps,
                                   fix_parameters=fix_params)
        if last_block == True:
            h = F.relu(h)

    with nn.parameter_scope("pointwise"):
        h = PF.convolution(h,
                           f, (1, 1),
                           stride=(1, 1),
                           with_bias=False,
                           fix_parameters=fix_params)
        h = PF.batch_normalization(h,
                                   batch_stat=not test,
                                   eps=eps,
                                   fix_parameters=fix_params)
        if end_point == True:
            global endpoints
            endpoints['Decoder End Point 1'] = h

        if act_fn == True:
            h = F.relu(h)

    return h
Esempio n. 12
0
def conv_block(x, out_ch, kernel, stride, pad, test, scope):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, out_ch, (kernel, kernel), stride=(stride, stride),
                           pad=(pad, pad), w_init=NormalInitializer(0.02),
                           name='conv')
        h = PF.batch_normalization(h, batch_stat=not test, name='bn')
        h = F.leaky_relu(h, alpha=0.2)
    return h
Esempio n. 13
0
def discriminator(x, num_layer, fs, min_fs, kernel, pad, scope, test=False):
    with nn.parameter_scope(scope):
        h = conv_block(x, fs, kernel, 1, pad, test, 'head')
        h = middle_blocks(h, num_layer, fs, min_fs, kernel, pad, test)
        h = PF.convolution(h, 1, (kernel, kernel),
                           stride=(1, 1), pad=(pad, pad),
                           w_init=NormalInitializer(0.02), name='tail')
    return h
Esempio n. 14
0
def test_save_module_grad_only_false():
    x = nn.Variable.from_numpy_array(np.random.random([1, 2, 10, 10]))
    ref_y = PF.convolution(x, 4, kernel=(3, 3), stride=(1, 1))
    for v in nn.get_parameters().values():
        v.need_grad = False
    ref_g = nn.graph_def.create_graph_from_variable("te_module", ref_y)
    y = ref_g(x)
    forward_variable_and_check_equal(ref_y, y)
Esempio n. 15
0
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        if act is None:
            return h
        h = PF.batch_normalization(h, batch_stat=not test)
        h = act(h)
        return h
Esempio n. 16
0
def clbn_resblock(x, maps, kernel=(3, 3), pad=(1, 1), stride=(1, 1), test=False, bias_w=False, name='clbn-convblock'):
    h = x
    with nn.parameter_scope(name):
        h = PF.convolution(x, maps, kernel=kernel, pad=pad, stride=stride,
                           channel_last=True, with_bias=bias_w)
        z = h
        h = PF.batch_normalization(h, axes=[3], batch_stat=not test)
    return F.relu(h + z)
Esempio n. 17
0
def clbn_self_folding_resblock(x, i, maps, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name='convblock'):
    h = x
    with nn.parameter_scope(name):
        h = PF.convolution(h, maps, kernel=kernel, pad=pad, stride=stride,
                           channel_last=True, with_bias=False)
        a, b = create_scale_bias(i, h.shape[3], axes=[3])
        h = a * h + b
    return F.relu(h + x)
Esempio n. 18
0
def multiple_inputs_outputs_resblock(x, maps, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
                                     w_bias=False, test=False, name='mo-convblock'):
    h = x
    with nn.parameter_scope(name):
        h = PF.convolution(h, maps, kernel=kernel, pad=pad,
                           stride=stride, with_bias=w_bias)
        h = PF.batch_normalization(h, axes=[1], batch_stat=not test)
    return F.relu(h + x)
Esempio n. 19
0
def Downsample(h, nmap_out, scope_name):
    with nn.parameter_scope(scope_name):
        def sn_w(w): return PF.spectral_norm(w, dim=0)
        h = PF.convolution(h, nmap_out, (4, 4), stride=(
            2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False)
        h = PF.batch_normalization(h)
        h = F.leaky_relu(h, 0.2, inplace=True)
    return h
Esempio n. 20
0
def res_unit_default(x, scope, bn_idx, test):
    # BatchNorm is independent from parameter sharing
    C = x.shape[1]
    with nn.parameter_scope(scope):
        with nn.parameter_scope('conv1'):
            with nn.parameter_scope('bn_{}-a'.format(bn_idx)):
                h = PF.batch_normalization(x, batch_stat=not test)
                h = F.relu(h)
            h = PF.convolution(h, C, (3, 3), pad=(1, 1), with_bias=False)
            with nn.parameter_scope('bn_{}-b'.format(bn_idx)):
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            if not test:
                h = F.dropout(h, 0.25)
        with nn.parameter_scope('conv2'):
            h = PF.convolution(h, C, (3, 3), pad=(1, 1), with_bias=False)
    return x + h
Esempio n. 21
0
    def pad_conv(self, x, fdim, stride):
        h = PF.convolution(x,
                           fdim, (4, 4),
                           stride=stride,
                           pad=(2, 2),
                           **self.conv_opts)

        return h
Esempio n. 22
0
def get_alex_feat(input_var):
    """
        Exactly the same architecture used for LPIPS.
        This is a little bit modified version (can't use nnabla models!). 
    """
    assert input_var.shape[1] == 3
    act1 = F.relu(PF.convolution(input_var, outmaps=64, kernel=(
        11, 11), pad=(2, 2), stride=(4, 4), name="conv0"), True)
    act2 = F.relu(PF.convolution(F.max_pooling(act1, kernel=(3, 3), stride=(
        2, 2)), outmaps=192, kernel=(5, 5), pad=(2, 2), name="conv3"), True)
    act3 = F.relu(PF.convolution(F.max_pooling(act2, kernel=(3, 3), stride=(
        2, 2)), outmaps=384, kernel=(3, 3), pad=(1, 1), name="conv6"), True)
    act4 = F.relu(PF.convolution(act3, outmaps=256, kernel=(
        3, 3), pad=(1, 1), name="conv8"), True)
    act5 = F.relu(PF.convolution(act4, outmaps=256, kernel=(
        3, 3), pad=(1, 1), name="conv10"), True)
    return [act1, act2, act3, act4, act5]
Esempio n. 23
0
def bsf_resblock(x, maps, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
                 test=False, w_bias=False, name='convblock'):
    with nn.parameter_scope(name):
        h = PF.convolution(x, maps, kernel=kernel, pad=pad,
                           stride=stride, with_bias=w_bias)
        z = h
        h = PF.batch_normalization(h, batch_stat=False)
    return F.relu(h + z)
Esempio n. 24
0
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        if act is None:
            return h
        h = PF.batch_normalization(h, batch_stat=not test)
        h = act(h)
        return h
Esempio n. 25
0
 def convblock(x, n, f_size=9, name=''):
     r = PF.convolution(x,
                        n,
                        kernel=(f_size, f_size),
                        pad=(f_size // 2, f_size // 2),
                        stride=(1, 1),
                        name=name)
     return F.relu(r)
Esempio n. 26
0
def cifar10_resnet23_prediction(ctx, scope, image, test=False):
    """
    Construct ResNet 23
    """
    # Residual Unit
    def res_unit(x, scope_name, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
            return h

    # Random generator for using the same init parameters in all devices
    nmaps = 64
    ncls = 10

    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope(scope):
            with nn.parameter_scope("conv1"):
                h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
             
            h = res_unit(h, "conv2", False)    # -> 32x32
            h = res_unit(h, "conv3", True)     # -> 16x16
            h = res_unit(h, "conv4", False)    # -> 16x16
            h = res_unit(h, "conv5", True)     # -> 8x8
            h = res_unit(h, "conv6", False)    # -> 8x8
            h = res_unit(h, "conv7", True)     # -> 4x4
            h = res_unit(h, "conv8", False)    # -> 4x4
            h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
            pred = PF.affine(h, ncls)

    return pred
Esempio n. 27
0
    def __call__(self, z, m):
        # m has target image shape: (N, emb, H, W)
        # z: (N, z_dim)

        N = m.shape[0]
        H, W = self.image_shape
        sh = H // (2**self.num_upsample)
        sw = W // (2**self.num_upsample)

        with ps("spade_generator"):
            with ps("z_embedding"):
                x = PF.affine(z,
                              16 * self.nf * sh * sw,
                              w_init=w_init(z, 16 * self.nf * sh * sw))
                x = F.reshape(x, (N, 16 * self.nf, sh, sw))

            with ps("head"):
                x = self.head_0(x, m)

            with ps("middle0"):
                x = self.up(x)
                x = self.G_middle_0(x, m)

            with ps("middel1"):
                if self.num_upsample > 5:
                    x = self.up(x)
                x = self.G_middle_1(x, m)

            with ps("up0"):
                x = self.up(x)
                x = self.up_0(x, m)

            with ps("up1"):
                x = self.up(x)
                x = self.up_1(x, m)

            with ps("up2"):
                x = self.up(x)
                x = self.up_2(x, m)

            with ps("up3"):
                x = self.up(x)
                x = self.up_3(x, m)

            if self.num_upsample > 6:
                with ps("up4"):
                    x = self.up(x)
                    x = self.up_4(x, m)

            with ps("last_conv"):
                x = PF.convolution(F.leaky_relu(x, 2e-1),
                                   3,
                                   kernel=(3, 3),
                                   pad=(1, 1),
                                   w_init=w_init(x, 3))
                x = F.tanh(x)

        return x
def vectorizer(x, maxh=256, test=False, output_hidden=False):
    """
    Building discriminator network which maps a (B, 1, 28, 28) input to
    a (B, 100).
    """
    # Define shortcut functions
    def bn(xx):
        # Batch normalization
        return PF.batch_normalization(xx, batch_stat=not test)

    def downsample2(xx, c):
        return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)

    assert maxh / 8 > 0
    with nn.parameter_scope("dis"):
        # (1, 28, 28) --> (32, 16, 16)
        if not test:
            x_ = F.image_augmentation(x,min_scale=0.9,max_scale=1.08)
            x2 = F.random_shift(x_,(2,2))
            with nn.parameter_scope("conv1"):
                c1 = F.elu(bn(PF.convolution(x2, maxh / 8,
                                             (3, 3), pad=(3, 3), stride=(2, 2), with_bias=False)))
        else:
            with nn.parameter_scope("conv1"):
                c1 = F.elu(bn(PF.convolution(x, maxh / 8,
                                             (3, 3), pad=(3, 3), stride=(2, 2), with_bias=False)))
        # (32, 16, 16) --> (64, 8, 8)
        with nn.parameter_scope("conv2"):
            c2 = F.elu(bn(downsample2(c1, maxh / 4)))
        # (64, 8, 8) --> (128, 4, 4)
        with nn.parameter_scope("conv3"):
            c3 = F.elu(bn(downsample2(c2, maxh / 2)))
        # (128, 4, 4) --> (256, 4, 4)
        with nn.parameter_scope("conv4"):
            c4 = bn(PF.convolution(c3, maxh, (3, 3),
                                   pad=(1, 1), with_bias=False))
        # (256, 4, 4) --> (1,)
        with nn.parameter_scope("fc1"):
            #print "c4fdafafa",c4.shape
            #f = PF.affine(c4, 100)
            f = PF.convolution(c4, 100, (4, 4),
                                   pad=(0, 0), with_bias=False)
    if output_hidden:
        return f, [c1, c2, c3, c4]
    return f
Esempio n. 29
0
def discriminator(x, maxh=256, test=False, output_hidden=False):
    """
    Building discriminator network which maps a (B, 1, 28, 28) input to
    a (B, 1).
    """

    # Define shortcut functions
    def bn(xx):
        # Batch normalization
        return PF.batch_normalization(xx, batch_stat=not test)

    def downsample2(xx, c):
        return PF.convolution(xx,
                              c, (3, 3),
                              pad=(1, 1),
                              stride=(2, 2),
                              with_bias=False)

    assert maxh / 8 > 0
    with nn.parameter_scope("dis"):
        # (1, 28, 28) --> (32, 16, 16)
        with nn.parameter_scope("conv1"):
            c1 = F.elu(
                bn(
                    PF.convolution(x,
                                   maxh / 8, (3, 3),
                                   pad=(3, 3),
                                   stride=(2, 2),
                                   with_bias=False)))
        # (32, 16, 16) --> (64, 8, 8)
        with nn.parameter_scope("conv2"):
            c2 = F.elu(bn(downsample2(c1, maxh / 4)))
        # (64, 8, 8) --> (128, 4, 4)
        with nn.parameter_scope("conv3"):
            c3 = F.elu(bn(downsample2(c2, maxh / 2)))
        # (128, 4, 4) --> (256, 4, 4)
        with nn.parameter_scope("conv4"):
            c4 = bn(
                PF.convolution(c3, maxh, (3, 3), pad=(1, 1), with_bias=False))
        # (256, 4, 4) --> (1,)
        with nn.parameter_scope("fc1"):
            f = PF.affine(c4, 1)
    if output_hidden:
        return f, [c1, c2, c3, c4]
    return f
Esempio n. 30
0
    def network(self, x, test=False):
        # Input -> 1,28,28
        # Convolution -> 16,22,22
        with nn.parameter_scope('Convolution'):
            h = PF.convolution(x, 16, (7, 7), (0, 0))

        # ReLU
        h = F.relu(h, True)

        # BatchNormalization
        with nn.parameter_scope('BatchNormalization'):
            h = PF.batch_normalization(h, (1, ), 0.9, 0.0001, not test)

        # MaxPooling -> 16,11,11
        h = F.max_pooling(h, (2, 2), (2, 2), True)

        # Convolution_2 -> 30,9,9
        with nn.parameter_scope('Convolution_2'):
            h = PF.convolution(h, 30, (3, 3), (0, 0))

        # ReLU_2
        h = F.relu(h, True)

        # BatchNormalization_2
        with nn.parameter_scope('BatchNormalization_2'):
            h = PF.batch_normalization(h, (1, ), 0.9, 0.0001, not test)

        # MaxPooling_2 -> 30,4,4
        h = F.max_pooling(h, (2, 2), (2, 2), True)
        # Affine -> 160
        with nn.parameter_scope('Affine'):
            h = PF.affine(h, (160, ))

        # ReLU_3
        h = F.relu(h, True)

        # BatchNormalization_3
        with nn.parameter_scope('BatchNormalization_3'):
            h = PF.batch_normalization(h, (1, ), 0.9, 0.0001, not test)

        # Affine_2 -> 26
        with nn.parameter_scope('Affine_2'):
            h = PF.affine(h, (26, ))

        return h
Esempio n. 31
0
def residual_block_5C(x, num_output_channel=64, growth_channel=32):
    conv1 = F.leaky_relu(PF.convolution(x,
                                        growth_channel,
                                        kernel=(3, 3),
                                        stride=(1, 1),
                                        pad=(1, 1),
                                        name='conv1'),
                         alpha=0.2,
                         inplace=True)
    conv2 = F.leaky_relu(PF.convolution(F.concatenate(x, conv1, axis=1),
                                        growth_channel,
                                        kernel=(3, 3),
                                        stride=(1, 1),
                                        pad=(1, 1),
                                        name='conv2'),
                         alpha=0.2,
                         inplace=True)
    conv3 = F.leaky_relu(PF.convolution(F.concatenate(x, conv1, conv2, axis=1),
                                        growth_channel,
                                        kernel=(3, 3),
                                        stride=(1, 1),
                                        pad=(1, 1),
                                        name='conv3'),
                         alpha=0.2,
                         inplace=True)
    conv4 = F.leaky_relu(PF.convolution(F.concatenate(x,
                                                      conv1,
                                                      conv2,
                                                      conv3,
                                                      axis=1),
                                        growth_channel,
                                        kernel=(3, 3),
                                        stride=(1, 1),
                                        pad=(1, 1),
                                        name='conv4'),
                         alpha=0.2,
                         inplace=True)
    conv5 = PF.convolution(F.concatenate(x, conv1, conv2, conv3, conv4,
                                         axis=1),
                           num_output_channel,
                           kernel=(3, 3),
                           stride=(1, 1),
                           pad=(1, 1),
                           name='conv5')
    return (conv5 * 0.2) + x
Esempio n. 32
0
def spade(x, m, hidden_dim=128, kernel=(3, 3), norm_type="in"):
    """
    Spatially-Adaptive Normalization proposed in Semantic Image Synthesis with Spatially-Adaptive Normalization (https://arxiv.org/pdf/1903.07291.pdf).


    Args:
        x (nn.Variable): Input variable for spade layer.
        m (nn.Variable):
            Spatial condition variable like object_id mask segmentation.
            This is for generating adaptive scale(gamma) and adaptice bias(beta) applied after normalization.
        hidden_dim (int): Hidden dims for first convolution applied to m.
        kernel (list of int): Kernel shapes for convolutions.
        norm_type (str) : A type of normalization. ["in", "bn"] are supported now.
    """
    # x: (N, Cx, H, W), m: (N, Cm, H, W)
    assert len(x.shape) == 4 and len(m.shape) == 4

    pad = tuple(i // 2 for i in kernel)
    c_dim = x.shape[1]
    conv_args = dict(kernel=kernel, pad=pad)
    with ps("spatial_adaptive_normalization"):
        normalized = _normalize(x, norm_type)

        m = F.interpolate(m, output_size=x.shape[2:], mode="nearest")

        with ps("shared"):
            actv = F.relu(
                PF.convolution(m,
                               hidden_dim,
                               w_init=w_init(m, hidden_dim),
                               **conv_args))

        with ps("gamma"):
            gamma = PF.convolution(actv,
                                   c_dim,
                                   w_init=w_init(actv, c_dim),
                                   **conv_args)

        with ps("beta"):
            beta = PF.convolution(actv,
                                  c_dim,
                                  w_init=w_init(actv, c_dim),
                                  **conv_args)

    return normalized * gamma + beta
Esempio n. 33
0
def cf_resblock(x, maps, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
                test=False, channel_last=False, name='cf-convblock'):
    axes = get_channel_axes(channel_last)
    h = x
    with nn.parameter_scope(name):
        h = PF.convolution(h, maps, kernel=kernel, pad=pad, stride=stride,
                           channel_last=channel_last, with_bias=False)
        h = PF.batch_normalization(h, axes=axes, batch_stat=not test)
    return F.relu(h + x)
Esempio n. 34
0
def test_graph_model(model, seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    nn.clear_parameters()
    if model == "mlp":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
        z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    elif model == "recurrent":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
            z2 = F.relu(z, inplace=True)
        h = z2
        for _ in range(2):
            with nn.parameter_scope('fc2'):
                h = PF.affine(h, 3)
                h = F.relu(h, inplace=True)
        with nn.parameter_scope('fc3'):
            z3 = PF.affine(h, 5)
    elif model == "convolution":
        with nn.parameter_scope('conv1'):
            z = PF.convolution(x, 3, (2, 2))
            z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    else:
        raise ValueError()
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    L.forward(clear_no_need_grad=True)

    # Backprop
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    L.backward(clear_buffer=True)
    x.g = rng.randn(*x.shape)
    parameters = nn.get_parameters()
    for param in parameters.values():
        param.grad.zero()
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L, inputs, 1e-3)
    assert np.allclose(ngrad, agrad, atol=1.05e-2)
Esempio n. 35
0
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.prelu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        h = PF.batch_normalization(h, batch_stat=not test)
        shape = h.shape
        w = nn.Variable()
        w.d = 0.1
        h = act(h, w)
        return h
Esempio n. 36
0
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.prelu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        h = PF.batch_normalization(h, batch_stat=not test)
        shape = h.shape
        w = nn.Variable()
        w.d = 0.3
        h = act(h, w)
        return h
Esempio n. 37
0
    def front_end(self, x, channels):
        with nn.parameter_scope("first_layer"):
            pad_width = get_symmetric_padwidth(3,
                                               channel_last=self.channel_last)
            h = F.pad(x, pad_width=pad_width, mode=self.padding_type)
            h = PF.convolution(h, channels[0], (7, 7), **self.conv_opts)
            h = self.instance_norm_relu(h)

        for i, channel in enumerate(channels[1:]):
            with nn.parameter_scope("down_sample_layer_{}".format(i)):
                h = PF.convolution(h,
                                   channel, (3, 3),
                                   stride=(2, 2),
                                   pad=(1, 1),
                                   **self.conv_opts)
                h = self.instance_norm_relu(h)

        return h
Esempio n. 38
0
    def __call__(self, x, m):
        # x: (N, C, H, W)
        s = self.shortcut(x, m)

        hidden_dim = min(x.shape[1], self.out_dim)
        with ps("res_layer1"):
            h = spade(x, m)
            h = self.act(h)
            h = PF.convolution(h, hidden_dim, kernel=(3, 3), pad=(1, 1),
                               w_init=w_init(h, hidden_dim), **self.conv_opts)

        with ps("res_layer2"):
            h = spade(h, m)
            h = self.act(h)
            h = PF.convolution(h, self.out_dim, kernel=(3, 3), pad=(1, 1),
                               w_init=w_init(h, self.out_dim), **self.conv_opts)

        return s + h
Esempio n. 39
0
def conv1x1(x, output_filter, scope, test):
    """
        1x1 convolution, works more like a constant multiplier.
    """
    with nn.parameter_scope("1x1conv"):
        h = PF.convolution(x, output_filter, (1, 1), with_bias=False)
        h = PF.batch_normalization(h, batch_stat=not test)
        h = F.relu(h)
    return h
Esempio n. 40
0
def convolution(x, n, kernel, stride, pad, init_method=None):
    if init_method == "paper":
        init = nn.initializer.NormalInitializer(0.02)
    else:
        s = nn.initializer.calc_normal_std_glorot(x.shape[1], n, kernel=kernel)
        init = nn.initializer.NormalInitializer(s)
    x = PF.convolution(x, n, kernel=kernel, stride=stride,
                       pad=pad, with_bias=True, w_init=init)
    return x
Esempio n. 41
0
def test_graph_model(model, seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definition
    nn.clear_parameters()
    if model == "mlp":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
        z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    elif model == "recurrent":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 8)
            z2 = F.relu(z, inplace=True)
        h = z2
        for _ in range(2):
            with nn.parameter_scope('fc2'):
                h = PF.affine(h, 8)
                h = F.relu(h, inplace=True)
        with nn.parameter_scope('fc3'):
            z3 = PF.affine(h, 5)
    elif model == "convolution":
        with nn.parameter_scope('conv1'):
            z = PF.convolution(x, 3, (2, 2))
            z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    else:
        raise ValueError()
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    L.forward(clear_no_need_grad=True)

    # Backprop
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    L.backward(clear_buffer=True)
    x.g = rng.randn(*x.shape)
    parameters = nn.get_parameters()
    for param in parameters.values():
        param.grad.zero()
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L, inputs, 1e-3)
    assert_allclose(ngrad, agrad, atol=1.05e-2)
Esempio n. 42
0
def res_block(x, scope_name, act=F.relu, dn=False, test=False):
    C = x.shape[1]
    with nn.parameter_scope(scope_name):
        # Conv -> BN -> Relu
        with nn.parameter_scope("conv1"):
            h = PF.convolution(x, C/2, kernel=(1, 1), pad=(0, 0), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        # Conv -> BN -> Relu
        with nn.parameter_scope("conv2"):
            h = PF.convolution(h, C/2, kernel=(3, 3), pad=(1, 1), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        # Conv -> BN
        with nn.parameter_scope("conv3"): 
            h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
    return h
Esempio n. 43
0
def test_graph_clear_buffer(seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4])
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    # Network definition
    nn.set_default_context(nn.Context())
    nn.clear_parameters()
    x1 = x + 1
    x2 = x1 - 1
    with nn.parameter_scope('conv1'):
        z = PF.convolution(x2, 3, (2, 2))
        z2 = F.relu(z, inplace=True)
    with nn.parameter_scope('fc2'):
        z3 = PF.affine(z2, 5)
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    import tempfile
    import os
    tmpd = tempfile.mkdtemp()
    nn.save_parameters(os.path.join(tmpd, 'parameter.h5'))
    first = False
    for cnng in [False, True]:
        for cb in [False, True]:
            _ = nn.load_parameters(os.path.join(tmpd, 'parameter.h5'))
            for v in nn.get_parameters().values():
                v.grad.zero()
            L.forward(clear_no_need_grad=cnng)
            L.backward(clear_buffer=cb)
            if not first:
                first = True
                g = list(nn.get_parameters().values())[0].g.copy()
            else:
                g2 = list(nn.get_parameters().values())[0].g.copy()
                assert np.all(g == g2)
Esempio n. 44
0
def mnist_resnet_prediction(image, test=False):
    """
    Construct ResNet for MNIST.
    """
    image /= 255.0

    def bn(x):
        return PF.batch_normalization(x, batch_stat=not test)

    def res_unit(x, scope):
        C = x.shape[1]
        with nn.parameter_scope(scope):
            with nn.parameter_scope('conv1'):
                h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
            with nn.parameter_scope('conv2'):
                h = F.elu(
                    bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
            with nn.parameter_scope('conv3'):
                h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
        return F.elu(F.add2(h, x, inplace=True))
    # Conv1 --> 64 x 32 x 32
    with nn.parameter_scope("conv1"):
        c1 = F.elu(
            bn(PF.convolution(image, 64, (3, 3), pad=(3, 3), with_bias=False)))
    # Conv2 --> 64 x 16 x 16
    c2 = F.max_pooling(res_unit(c1, "conv2"), (2, 2))
    # Conv3 --> 64 x 8 x 8
    c3 = F.max_pooling(res_unit(c2, "conv3"), (2, 2))
    # Conv4 --> 64 x 8 x 8
    c4 = res_unit(c3, "conv4")
    # Conv5 --> 64 x 4 x 4
    c5 = F.max_pooling(res_unit(c4, "conv5"), (2, 2))
    # Conv5 --> 64 x 4 x 4
    c6 = res_unit(c5, "conv6")
    pl = F.average_pooling(c6, (4, 4))
    with nn.parameter_scope("classifier"):
        y = PF.affine(pl, 10)
    return y
Esempio n. 45
0
def generator(z, maxh=256, test=False, output_hidden=False):
    """
    Building generator network which takes (B, Z, 1, 1) inputs and generates
    (B, 1, 28, 28) outputs.
    """
    # Define shortcut functions
    def bn(x):
        # Batch normalization
        return PF.batch_normalization(x, batch_stat=not test)

    def upsample2(x, c):
        # Twise upsampling with deconvolution.
        return PF.deconvolution(x, c, kernel=(4, 4), pad=(1, 1), stride=(2, 2), with_bias=False)

    assert maxh / 4 > 0
    with nn.parameter_scope("gen"):
        # (Z, 1, 1) --> (256, 4, 4)
        with nn.parameter_scope("deconv1"):
            d1 = F.elu(bn(PF.deconvolution(z, maxh, (4, 4), with_bias=False)))
        # (256, 4, 4) --> (128, 8, 8)
        with nn.parameter_scope("deconv2"):
            d2 = F.elu(bn(upsample2(d1, maxh / 2)))
        # (128, 8, 8) --> (64, 16, 16)
        with nn.parameter_scope("deconv3"):
            d3 = F.elu(bn(upsample2(d2, maxh / 4)))
        # (64, 16, 16) --> (32, 28, 28)
        with nn.parameter_scope("deconv4"):
            # Convolution with kernel=4, pad=3 and stride=2 transforms a 28 x 28 map
            # to a 16 x 16 map. Deconvolution with those parameters behaves like an
            # inverse operation, i.e. maps 16 x 16 to 28 x 28.
            d4 = F.elu(bn(PF.deconvolution(
                d3, maxh / 8, (4, 4), pad=(3, 3), stride=(2, 2), with_bias=False)))
        # (32, 28, 28) --> (1, 28, 28)
        with nn.parameter_scope("conv5"):
            x = F.tanh(PF.convolution(d4, 1, (3, 3), pad=(1, 1)))
    if output_hidden:
        return x, [d1, d2, d3, d4]
    return x
def cifar100_resnet23_prediction(image,
                                 ctx, test=False):
    """
    Construct ResNet 23
    """
    # Residual Unit
    def res_unit(x, scope_name, rng, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C, C / 2, kernel=(1, 1)),
                    rng=rng)
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C / 2, C / 2, kernel=(3, 3)),
                    rng=rng)
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C / 2, C, kernel=(1, 1)),
                    rng=rng)
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))

            return h

    # Random generator for using the same init parameters in all devices
    rng = np.random.RandomState(0)
    nmaps = 384
    ncls = 100

    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            # Preprocess
            if not test:

                image = F.image_augmentation(image, contrast=1.0,
                                             angle=0.25,
                                             flip_lr=True)
                image.need_grad = False

            w_init = UniformInitializer(
                calc_uniform_lim_glorot(3, nmaps, kernel=(3, 3)),
                rng=rng)
            h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
                               w_init=w_init, with_bias=False)
            h = PF.batch_normalization(h, batch_stat=not test)
            h = F.relu(h)

        h = res_unit(h, "conv2", rng, False)    # -> 32x32
        h = res_unit(h, "conv3", rng, True)     # -> 16x16
        h = res_unit(h, "conv4", rng, False)    # -> 16x16
        h = res_unit(h, "conv5", rng, True)     # -> 8x8
        h = res_unit(h, "conv6", rng, False)    # -> 8x8
        h = res_unit(h, "conv7", rng, True)     # -> 4x4
        h = res_unit(h, "conv8", rng, False)    # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1

        w_init = UniformInitializer(
            calc_uniform_lim_glorot(int(np.prod(h.shape[1:])), ncls, kernel=(1, 1)), rng=rng)
        pred = PF.affine(h, ncls, w_init=w_init)

    return pred
Esempio n. 47
0
 def downsample2(xx, c):
     return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)
Esempio n. 48
0
def one_by_one_conv(h, scope, k=1, s=1, p=1):
    with nn.parameter_scope(scope):
        maps = h.shape[1]
        h = PF.convolution(h, maps, kernel=(k, k), stride=(s, s), pad=(1, 1))
    return h
Esempio n. 49
0
def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False, cnt=0):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        h = batch_normalization(h, test=test)
        h = act(h)
        return h