Esempio n. 1
0
def set_random_seed(auto_var):
    random_seed = auto_var.get_var("random_seed")

    tf.set_random_seed(random_seed)
    np.random.seed(random_seed)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    keras.backend.set_session(sess)
    keras.layers.core.K.set_learning_phase(0)
    #tensorflow.keras.backend.set_session(sess)
    sess.run(tf.global_variables_initializer())
    auto_var.set_intermidiate_variable("sess", sess)
    random_state = np.random.RandomState(auto_var.get_var("random_seed"))
    auto_var.set_intermidiate_variable("random_state", random_state)

    return random_state
Esempio n. 2
0
def eps_accuracy(auto_var):
    random_state = set_random_seed(auto_var)
    ord = auto_var.get_var("ord")

    dataset_name = auto_var.get_variable_name("dataset")
    if 'fullmnist' in dataset_name or 'fullfashion' in dataset_name:
        X, y, x_test, y_test, eps_list = auto_var.get_var("dataset")
        idxs = np.arange(len(x_test))
        random_state.shuffle(idxs)
        tstX, tsty = x_test[idxs[:200]], y_test[idxs[:200]]

        trnX, tstX = X.reshape((len(X), -1)), tstX.reshape((len(tstX), -1))
        trny = y
    else:
        X, y, eps_list = auto_var.get_var("dataset")
        idxs = np.arange(len(X))
        random_state.shuffle(idxs)
        trnX, tstX, trny, tsty = X[idxs[:-200]], X[idxs[-200:]], y[idxs[:-200]], y[idxs[-200:]]

    scaler = MinMaxScaler()
    trnX = scaler.fit_transform(trnX)
    tstX = scaler.transform(tstX)

    lbl_enc = OneHotEncoder(categories=[np.sort(np.unique(y))], sparse=False)
    lbl_enc.fit(trny.reshape(-1, 1))

    auto_var.set_intermidiate_variable("lbl_enc", lbl_enc)

    ret = {}
    results = []

    auto_var.set_intermidiate_variable("trnX", trnX)
    auto_var.set_intermidiate_variable("trny", trny)

    model_name = auto_var.get_variable_name("model")
    attack_name = auto_var.get_variable_name("attack")
    if 'adv_rf' in model_name:
        pre_model = auto_var.get_var_with_argument('model', model_name[4:])
        pre_model.fit(trnX, trny)
        if 'blackbox' in attack_name:
            auto_var.set_intermidiate_variable("model", pre_model)
    elif 'adv_nn' in model_name and 'blackbox' in attack_name:
        pre_model = auto_var.get_var_with_argument('model', model_name[4:])
        pre_model.fit(trnX, trny)
        auto_var.set_intermidiate_variable("model", pre_model)
    elif 'mlp' in model_name or 'logistic' in model_name:
        auto_var.set_intermidiate_variable("eps_list", eps_list)

    model = auto_var.get_var("model")
    auto_var.set_intermidiate_variable("model", model)
    model.fit(trnX, trny)
    ret['trnX_len'] = len(trnX)

    pred = model.predict(tstX)
    ori_tstX, ori_tsty = tstX, tsty # len = 200
    idxs = np.where(pred == tsty)[0]
    random_state.shuffle(idxs)
    tstX, tsty = tstX[idxs[:100]], tsty[idxs[:100]]
    if len(tsty) != 100:
        print("didn't got 100 testing examples, abort.")
        ret['avg_pert'] = {'avg': 0, 'missed_count': 100,}
        ret['tst_score'] = (model.predict(ori_tstX) == ori_tsty).mean()
        if ('adv' in model_name) or ('advPruning' in model_name) or ('robustv2' in model_name):
            ret['aug_len'] = len(model.augX)
        return ret
        #raise ValueError("didn't got 100 testing examples")

    augX = None
    if ('approxAP' in model_name) or ('adv' in model_name) or ('advPruning' in model_name) or ('robustv2' in model_name):
        assert hasattr(model, 'augX')
        auto_var.set_intermidiate_variable("trnX", model.augX)
        auto_var.set_intermidiate_variable("trny", model.augy)
        augX, augy = model.augX, model.augy

    if augX is not None:
        ret['aug_len'] = len(augX)

    if len(tsty) != 100 or \
       (np.unique(auto_var.get_intermidiate_variable('trny'))[0] != None and \
       len(np.unique(auto_var.get_intermidiate_variable('trny'))) == 1):
        tst_perturbs = np.array([np.zeros_like(tstX) for _ in range(len(eps_list))])
        ret['single_label'] = True
        attack_model = None
    else:
        attack_model = auto_var.get_var("attack")
        tst_perturbs = attack_model.perturb(tstX, y=tsty, eps=eps_list)

    ret['tst_score'] = (model.predict(ori_tstX) == ori_tsty).mean()

    #########
    if attack_model is not None and hasattr(attack_model, 'perts'):
        perts = attack_model.perts
    else:
        perts = np.zeros_like(tstX)
        for pert in tst_perturbs:
            pred = model.predict(tstX + pert)
            for i in range(len(pred)):
                if (pred[i] != tsty[i]) and np.linalg.norm(perts[i])==0:
                    perts[i] = pert[i]

    perts = perts.astype(float)
    perts, missed_count = baseline_pert(model, trnX, tstX, tsty, perts, ord)
    if len(np.unique(model.predict(trnX))) > 1:
        assert (model.predict(tstX + perts) == tsty).sum() == 0, model.predict(tstX + perts) == tsty
    else:
        # ignore single label case
        ret['single_label'] = True
    ret['avg_pert'] = {
        'avg': np.linalg.norm(perts, axis=1, ord=ord).mean().astype(float),
        'missed_count': int(missed_count),
    }
    #########

    results = estimate_model_roubstness(
        model, tstX, tsty, tst_perturbs, eps_list, ord, with_baseline=False)
    ret['results'] = results
    baseline_results = estimate_model_roubstness(
        model, tstX, tsty, tst_perturbs, eps_list, ord, with_baseline=True, trnX=trnX)
    ret['baseline_results'] = baseline_results

    print(json.dumps(auto_var.var_value))
    print(json.dumps(ret))
    return ret
Esempio n. 3
0
def temp_fix(auto_var):
    file_name = get_file_name(auto_var)
    print(file_name)
    if os.path.exists("%s.json" % file_name):
        with open("%s.json" % file_name, "r") as f:
            ret = json.load(f)
        if "tst_score" in ret:
            return
    else:
        return

    random_state = set_random_seed(auto_var)
    ord = auto_var.get_var("ord")

    X, y, eps_list = auto_var.get_var("dataset")
    idxs = np.arange(len(X))
    random_state.shuffle(idxs)
    trnX, tstX, trny, tsty = X[idxs[:-200]], X[idxs[-200:]], y[idxs[:-200]], y[
        idxs[-200:]]

    scaler = MinMaxScaler()
    trnX = scaler.fit_transform(trnX)
    tstX = scaler.transform(tstX)

    lbl_enc = OneHotEncoder(categories=[np.sort(np.unique(y))], sparse=False)
    #lbl_enc = OneHotEncoder(sparse=False)
    lbl_enc.fit(trny.reshape(-1, 1))

    auto_var.set_intermidiate_variable("lbl_enc", lbl_enc)

    results = []

    auto_var.set_intermidiate_variable("trnX", trnX)
    auto_var.set_intermidiate_variable("trny", trny)

    model_name = auto_var.get_variable_value("model")
    attack_name = auto_var.get_variable_value("attack")
    if 'adv_rf' in model_name:
        pre_model = auto_var.get_var_with_argument('model', model_name[4:])
        pre_model.fit(trnX, trny)
        if 'blackbox' in attack_name:
            auto_var.set_intermidiate_variable("model", pre_model)
    elif 'adv_nn' in model_name and 'blackbox' in attack_name:
        pre_model = auto_var.get_var_with_argument('model', model_name[4:])
        pre_model.fit(trnX, trny)
        auto_var.set_intermidiate_variable("model", pre_model)

    model = auto_var.get_var("model")
    auto_var.set_intermidiate_variable("model", model)
    model.fit(trnX, trny)

    pred = model.predict(tstX)
    ori_tstX, ori_tsty = tstX, tsty  # len = 200
    idxs = np.where(pred == tsty)[0]
    random_state.shuffle(idxs)

    augX = None
    if ('adv' in model_name) or ('advPruning'
                                 in model_name) or ('robustv2' in model_name):
        assert hasattr(model, 'augX')
        auto_var.set_intermidiate_variable("trnX", model.augX)
        auto_var.set_intermidiate_variable("trny", model.augy)
        augX, augy = model.augX, model.augy

    ret['tst_score'] = (model.predict(ori_tstX) == ori_tsty).mean()
    with open("%s.json" % file_name, "w") as f:
        json.dump(ret, f)
Esempio n. 4
0
def eps_accuracy(auto_var):
    random_state = set_random_seed(auto_var)
    ord = auto_var.get_var("ord")

    dataset_name = auto_var.get_variable_name("dataset")
    if ('fullmnist' in dataset_name \
        or 'fullfashion' in dataset_name \
        or 'cifar' in dataset_name \
        or 'fashion_mnist35f' in dataset_name \
        or 'fashion_mnist06f' in dataset_name \
        or 'mnist17f' in dataset_name \
        or 'cifar' in dataset_name
        ):
        X, y, x_test, y_test, eps_list = auto_var.get_var("dataset")
        idxs = np.arange(len(x_test))
        random_state.shuffle(idxs)
        tstX, tsty = x_test[idxs[:200]], y_test[idxs[:200]]
        idxs = np.arange(len(X))
        random_state.shuffle(idxs)
        X, y = X[idxs], y[idxs]

        trnX, tstX = X.reshape((len(X), -1)), tstX.reshape((len(tstX), -1))
        trny = y
    else:
        X, y, eps_list = auto_var.get_var("dataset")
        idxs = np.arange(len(X))
        random_state.shuffle(idxs)
        trnX, tstX, trny, tsty = X[idxs[:-100]], X[idxs[-200:]], y[idxs[:-100]], y[idxs[-200:]]

    scaler = MinMaxScaler()
    trnX = scaler.fit_transform(trnX)
    tstX = scaler.transform(tstX)

    lbl_enc = OneHotEncoder(categories=[np.sort(np.unique(y))], sparse=False)
    lbl_enc.fit(trny.reshape(-1, 1))

    auto_var.set_intermidiate_variable("lbl_enc", lbl_enc)

    ret = {}
    results = []

    x_adv = trnX;
    y_adv = trny;

    trnX = trnX[:-100];
    trny = trny[:-100]

    auto_var.set_intermidiate_variable("trnX", trnX)
    auto_var.set_intermidiate_variable("trny", trny)

    model_name = auto_var.get_variable_name("model")
    attack_name = auto_var.get_variable_name("attack")

    model = auto_var.get_var("model")
    auto_var.set_intermidiate_variable("model", model)
    model.fit(trnX, trny)
    ret['trnX_len'] = len(trnX)

    pred = model.predict(tstX)
    baseline_acc = accuracy_score(pred, tsty)
#    print(f"Baseline accuracy: {(pred == tsty).mean()}")
    ori_tstX, ori_tsty = tstX, tsty # len = 200
    pred_adv = model.predict(x_adv)
    idxs = np.where(pred_adv == y_adv)[0]
    random_state.shuffle(idxs)
    x_adv, y_adv = x_adv[idxs[:len(trnX)]], y_adv[idxs[:len(trnX)]]
    if len(x_adv) != len(trnX):
        print("didn't got enough adversarial examples, abort.")
        ret['avg_pert'] = {'avg': 0, 'missed_count': 100,}
        ret['tst_score'] = (model.predict(ori_tstX) == ori_tsty).mean()
        if ('adv' in model_name) or ('advPruning' in model_name) or ('robustv2' in model_name):
            ret['aug_len'] = len(model.augX)
        return ret
        #raise ValueError("didn't got 100 testing examples")

#    if len(tsty) != 100 or \
#       (np.unique(auto_var.get_intermidiate_variable('trny'))[0] != None and \
#       len(np.unique(auto_var.get_intermidiate_variable('trny'))) == 1):
#        tst_perturbs = np.array([np.zeros_like(tstX) for _ in range(len(eps_list))])
#        ret['single_label'] = True
#        attack_model = None
#    else:
#         attack_model = auto_var.get_var("attack")
#         adv_perturbs = attack_model.perturb(x_adv, y=y_adv, eps=eps_list)

    attack_model = auto_var.get_var("attack")
    adv_perturbs = attack_model.perturb(x_adv, y=y_adv, eps=eps_list)
    
    ret['tst_score'] = (model.predict(ori_tstX) == ori_tsty).mean()

    #########
#    perts = attack_model.perts

    if attack_model is not None and hasattr(attack_model, 'perts'):
        perts = attack_model.perts
    else:
        perts = np.zeros_like(x_adv)
        for pert in adv_perturbs:
            pred = model.predict(x_adv + pert)
            for i in range(len(pred)):
                if (pred[i] != y_adv[i]) and np.linalg.norm(perts[i])==0:
                    perts[i] = pert[i]

    perts = perts.astype(float)

#    missed_count = verify_adv(model, x_adv, perts, y_adv)    

    print('Training size : ', len(trnX))
    print('Baseline accuracy : %s' % '{0:.3%}'.format(baseline_acc)) 
#    print('Failed to find : %s' % '{0:.3%}'.format(missed_count)) 
    
#    noise_scale = auto_var.get_var("noise_scale")
    knockoff_acc = knockoff(model, x_adv, y_adv, perts, 0.9, ori_tstX, ori_tsty) 
   
    print('Knockoff model accuracy : %s' % '{0:.3%}'.format(knockoff_acc)) 

#    print('Perturbation :  %s' % '{0:.3%}'.format(np.linalg.norm(perts, axis=1, ord=ord).mean().astype(float)))

    perts, missed_count = baseline_pert(model, trnX, x_adv, y_adv, perts, ord)
    print('Missed count : ', missed_count)
    #if len(np.unique(model.predict(trnX))) > 1:
    #    assert (model.predict(tstX + perts) == tsty).sum() == 0, model.predict(tstX + perts) == tsty
    #else:
    #    # ignore single label case
    #    ret['single_label'] = True
    ret['avg_pert'] = {
        'avg': np.linalg.norm(perts, axis=1, ord=ord).mean().astype(float),
        'missed_count': int(missed_count),
    }
    print('Distortion avg: ', np.linalg.norm(perts, axis=1, ord=ord).mean().astype(float))
    #########

#    results = estimate_model_roubstness(
#        model, tstX, tsty, tst_perturbs, eps_list, ord, with_baseline=False)
#    ret['results'] = results
#    baseline_results = estimate_model_roubstness(
#        model, tstX, tsty, tst_perturbs, eps_list, ord, with_baseline=True, trnX=trnX)
#    ret['baseline_results'] = baseline_results

#    print(json.dumps(auto_var.var_value))
#    print(json.dumps(ret))
    return ret