def test_sparse_network(self, model_name, model_builder, input_size, algo, params):
        model = model_builder()
        from nncf.layers import NNCF_MODULES_MAP
        sparsifiable_modules = list(NNCF_MODULES_MAP.values())
        ref_num_sparsed = len(get_all_modules_by_type(model, sparsifiable_modules))

        config = get_empty_config(input_sample_size=input_size)
        config["compression"] = {"algorithm": algo, "params": params}

        compressed_model, compression_ctrl = create_compressed_model_and_algo_for_test(model, config)
        assert ref_num_sparsed == len(compression_ctrl.sparsified_module_info)
        check_model_graph(compressed_model, model_name, algo)
Esempio n. 2
0
def check_correct_nncf_modules_replacement(model: NNCFNetwork, compressed_model: NNCFNetwork) \
    -> Tuple[Dict[Scope, Module], Dict[Scope, Module]]:
    """
    Check that all convolutions in model was replaced by NNCF convolution.
    :param model: original model
    :param compressed_model: compressed model
    :return: list of all convolutions in  original model and list of all NNCF convolutions from compressed model
    """
    NNCF_MODULES_REVERSED_MAP = {value: key for key, value in NNCF_MODULES_MAP.items()}
    original_modules = get_all_modules_by_type(model, list(NNCF_MODULES_MAP.values()))
    nncf_modules = get_all_modules_by_type(compressed_model.get_nncf_wrapped_model(),
                                           list(NNCF_MODULES_MAP.keys()))
    assert len(original_modules) == len(nncf_modules)
    print(original_modules, nncf_modules)
    for scope in original_modules.keys():
        sparse_scope = deepcopy(scope)
        elt = sparse_scope.pop()  # type: ScopeElement
        elt.calling_module_class_name = NNCF_MODULES_REVERSED_MAP[elt.calling_module_class_name]
        sparse_scope.push(elt)
        print(sparse_scope, nncf_modules)
        assert sparse_scope in nncf_modules
    return original_modules, nncf_modules
    def test_sparse_network(self, desc: ModelDesc, algo):
        model = desc.model_builder()
        from nncf.layers import NNCF_MODULES_MAP
        sparsifiable_modules = list(NNCF_MODULES_MAP.values())
        ref_num_sparsed = len(
            get_all_modules_by_type(model, sparsifiable_modules))

        config = get_empty_config(input_sample_sizes=desc.input_sample_sizes)
        config["compression"] = {"algorithm": algo}

        compressed_model, compression_ctrl = \
            create_compressed_model_and_algo_for_test(model, config, dummy_forward_fn=desc.dummy_forward_fn)
        assert ref_num_sparsed == len(compression_ctrl.sparsified_module_info)
        check_model_graph(compressed_model, desc.dot_filename, algo)
 def test_sparse_network(self, model_name, model_builder, input_size, algo, params):
     model = model_builder()
     from nncf.layers import NNCF_MODULES_MAP
     sparsifiable_modules = list(NNCF_MODULES_MAP.values())
     ref_num_sparsed = len(get_all_modules_by_type(model, sparsifiable_modules))
     ctx = reset_context('test')
     config = get_empty_config(input_sample_size=input_size)
     config["compression"] = {"algorithm": algo, "params": params}
     compression_algo = create_compression_algorithm(model, config)
     assert ref_num_sparsed == len(compression_algo.sparsified_module_info)
     model = compression_algo.model
     with context('test') as c:
         _ = model(torch.zeros(input_size))
         c.reset_scope_operator_call_counters()
         _ = model(torch.zeros(input_size))
     check_graph(to_networkx(ctx), model_name, algo)
Esempio n. 5
0
 def test_sparse_network(self, model_name, model_builder, forward_fn_, algo, params):
     model = model_builder()
     from nncf.layers import NNCF_MODULES_MAP
     sparsifiable_modules = list(NNCF_MODULES_MAP.values())
     ref_num_sparsed = len(get_all_modules_by_type(model, sparsifiable_modules))
     ctx = reset_context('test')
     config = get_empty_config()
     config["compression"] = {"algorithm": algo, "params": params}
     compression_algo = create_compression_algorithm(model, config, dummy_forward_fn=forward_fn_)
     assert ref_num_sparsed == len(compression_algo.sparsified_module_info)
     model = compression_algo.model
     model.to(self.device)
     with context('test') as c:
         forward_fn_(model)
         c.reset_scope_operator_call_counters()
         forward_fn_(model)
     check_graph(ctx.graph, model_name, algo)
Esempio n. 6
0
 def test_sparse_quantize_network(self, model_name, model_builder, forward_fn_):
     model = model_builder()
     from nncf.layers import NNCF_MODULES_MAP
     sparsifiable_modules = list(NNCF_MODULES_MAP.values())
     ref_num_sparsed = len(get_all_modules_by_type(model, sparsifiable_modules))
     ctx = reset_context('test')
     config = get_empty_config()
     config["compression"] = [
         {"algorithm": "rb_sparsity", "params": {}},
         {"algorithm": "quantization", "params": {}}
     ]
     ctx = reset_context('orig')
     ctx = reset_context('quantized_graphs')
     compression_algo = create_compression_algorithm(model, config, dummy_forward_fn=forward_fn_)
     assert ref_num_sparsed == len(compression_algo.child_algos[0].sparsified_module_info)
     model = compression_algo.model
     model.to(self.device)
     forward_fn_(model)
     forward_fn_(model)
     check_graph(ctx.graph, model_name, "quantized_rb_sparsity")