Esempio n. 1
0
def convert_multilinear_upsample(converter, nnef_op, onnx_graph):
    # type: (Converter, NNEFOperation, ONNXGraph)->None
    input, output = converter.converted_tensors((nnef_op.input, nnef_op.output))

    if nnef_op.attribs['method'] != 'symmetric':
        if converter.enable_imprecise_image_resize:
            print("Warning: method={} is unsupported in multilinear_upsample, "
                  "using symmetric, because enable_imprecise_image_resize was True"
                  .format(nnef_op.attribs["method"]))
        else:
            assert False, "Error: method={} is unsupported in multilinear_upsample. " \
                          "Use enable_imprecise_image_resize=True, to suppress this error." \
                .format(nnef_op.attribs["method"])

    if nnef_op.attribs['border'] != 'replicate':
        if converter.enable_imprecise_image_resize:
            print("Warning: border={} is unsupported in multilinear_upsample, "
                  "using replicate, because enable_imprecise_image_resize was True"
                  .format(nnef_op.attribs["border"]))
        else:
            assert False, "Error: border={} is unsupported in multilinear_upsample. " \
                          "Use enable_imprecise_image_resize=True, to suppress this error." \
                .format(nnef_op.attribs["border"])

    scales = [float(f) for f in [1, 1] + nnef_op.attribs['factor']]

    ONNXOperation(graph=onnx_graph,
                  name='Upsample',
                  inputs=(input, converter.constant_1d_tensor(graph=onnx_graph, list_=scales, dtype='FLOAT')),
                  attribs=dict(mode='linear'),
                  outputs=output)
Esempio n. 2
0
def convert_tile(converter, nnef_op, onnx_graph):
    # type: (Converter, NNEFOperation, ONNXGraph)->None

    input, output = converter.converted_tensors((nnef_op.input, nnef_op.output))

    ONNXOperation(graph=onnx_graph,
                  name='Tile',
                  inputs=(input,
                          converter.constant_1d_tensor(graph=onnx_graph,
                                                       list_=nnef_op.attribs['repeats'],
                                                       dtype='INT64')),
                  outputs=output)
Esempio n. 3
0
def convert_nearest_upsample(converter, nnef_op, onnx_graph):
    # type: (Converter, NNEFOperation, ONNXGraph)->None

    input, output = converter.converted_tensors((nnef_op.input, nnef_op.output))

    scales = [float(f) for f in [1, 1] + nnef_op.attribs['factor']]

    ONNXOperation(graph=onnx_graph,
                  name='Upsample',
                  inputs=(input, converter.constant_1d_tensor(onnx_graph, scales, 'FLOAT')),
                  attribs=dict(mode='nearest'),
                  outputs=output)
Esempio n. 4
0
def convert_reshape(converter, nnef_op, onnx_graph):
    # type: (Converter, NNEFOperation, ONNXGraph)->None

    input, output = converter.converted_tensors((nnef_op.input, nnef_op.output))

    shape = nnef_op.attribs['shape']
    axis_start = nnef_op.attribs['axis_start']
    axis_count = nnef_op.attribs['axis_count']
    if axis_count == -1:
        axis_count = input.rank - axis_start

    onnx_shape = input.shape[:axis_start] + shape + input.shape[axis_start + axis_count:]

    ONNXOperation(graph=onnx_graph,
                  name='Reshape',
                  inputs=(input, converter.constant_1d_tensor(graph=onnx_graph,
                                                              list_=onnx_shape,
                                                              dtype='INT64')),
                  outputs=output)