def test_Ridge(self): breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=71023) wine = load_wine() Z = wine.data t = wine.target Z_train, Z_test, t_train, t_test = train_test_split(Z, t, test_size=0.2, random_state=61283) fit_obj = ns.Ridge2Classifier(lambda1=0.025, lambda2=0.5, n_hidden_features=5, n_clusters=0) fit_obj2 = ns.Ridge2Classifier(lambda1=0.01, lambda2=0.01, n_hidden_features=10, n_clusters=2) fit_obj3 = ns.Ridge2Classifier(lambda1=0.025, lambda2=0.05, n_hidden_features=5, n_clusters=0) fit_obj4 = ns.Ridge2Classifier(lambda1=0.001, lambda2=0.01, n_hidden_features=10, n_clusters=2) fit_obj.fit(X_train, y_train) preds1 = fit_obj.predict_proba(X_test) fit_obj2.fit(X_train, y_train) preds2 = fit_obj.predict_proba(X_test) fit_obj3.fit(Z_train, t_train) preds3 = fit_obj3.predict_proba(Z_test) fit_obj4.fit(Z_train, t_train) preds4 = fit_obj4.predict_proba(Z_test) self.assertTrue(np.allclose(preds1[0, 0], 5.1412488698250085e-06)) self.assertTrue(np.allclose(preds2[0, 0], 5.1412488698250085e-06)) self.assertTrue(np.allclose(preds3[0, 0], 0.0488412175)) self.assertTrue(np.allclose(preds4[0, 0], 0.8545733738)) self.assertTrue( np.allclose(fit_obj.predict(X_test)[0], 1) & np.allclose(fit_obj2.predict(X_test)[0], 1) & np.allclose(fit_obj3.predict(Z_test)[0], 1) & np.allclose(fit_obj4.predict(Z_test)[0], 0))
def test_score(self): breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target np.random.seed(123) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) wine = load_wine() Z = wine.data t = wine.target np.random.seed(123) Z_train, Z_test, t_train, t_test = train_test_split(Z, t, test_size=0.2) fit_obj = ns.Ridge2Classifier(lambda1=0.025, lambda2=0.5, n_hidden_features=5, n_clusters=2) fit_obj2 = ns.Ridge2Classifier(lambda1=0.01, lambda2=0.01, n_hidden_features=10, n_clusters=2) fit_obj3 = ns.Ridge2Classifier(lambda1=0.025, lambda2=0.05, n_hidden_features=5, n_clusters=2) fit_obj4 = ns.Ridge2Classifier(lambda1=0.001, lambda2=0.01, n_hidden_features=10, n_clusters=2) fit_obj.fit(X_train, y_train) score1 = fit_obj.score(X_test, y_test) fit_obj2.fit(X_train, y_train) score2 = fit_obj2.score(X_test, y_test) fit_obj3.fit(Z_train, t_train) score3 = fit_obj3.score(Z_test, t_test) fit_obj4.fit(Z_train, t_train) score4 = fit_obj4.score(Z_test, t_test) self.assertTrue(np.allclose(score1, 0.9649122807017544)) self.assertTrue(np.allclose(score2, 0.94736842105263153)) self.assertTrue(np.allclose(score3, 1.0)) self.assertTrue(np.allclose(score4, 0.9722222222222222))
# dataset no. 1 ---------- breast_cancer = load_breast_cancer() X = breast_cancer.data y = breast_cancer.target # split data into training test and test set np.random.seed(123) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # create the model with nnetsauce fit_obj = ns.Ridge2Classifier(lambda1=6.90185578e+04, lambda2=3.17392781e+02, n_hidden_features=95, n_clusters=2, row_sample=4.63427734e-01, dropout=3.62817383e-01, type_clust="gmm") # fit the model on training set fit_obj.fit(X_train, y_train) # get the accuracy on test set print(fit_obj.score(X_test, y_test)) # get area under the curve on test set (auc) print(fit_obj.score(X_test, y_test, scoring="roc_auc")) # dataset no. 2 ----------