Esempio n. 1
0
 def simple_bn(x, gamma, beta, moving_mean, moving_var,
               axis=1, epsilon=1e-5, shape=None):
     # expect = (x - moving_mean) / sym.sqrt(moving_var + eps) * gamma + beta
     scale = sym.elemwise_mul(1 / sym.sqrt(moving_var + epsilon), gamma)
     shift = sym.elemwise_add(
         sym.elemwise_mul(sym.negative(moving_mean), scale), beta)
     # for 2D
     num_newaxis=len(shape) - axis - 1
     if num_newaxis:
         scale = sym.expand_dims(scale, axis=1, num_newaxis=num_newaxis)
         shift = sym.expand_dims(shift, axis=1, num_newaxis=num_newaxis)
     return x * scale + shift
Esempio n. 2
0
 def simple_bn(x,
               gamma,
               beta,
               moving_mean,
               moving_var,
               axis=1,
               epsilon=1e-5,
               shape=None):
     # expect = (x - moving_mean) / sym.sqrt(moving_var + eps) * gamma + beta
     scale = sym.elemwise_mul(1 / sym.sqrt(moving_var + epsilon), gamma)
     shift = sym.elemwise_add(
         sym.elemwise_mul(sym.negative(moving_mean), scale), beta)
     # for 2D
     num_newaxis = len(shape) - axis - 1
     if num_newaxis:
         scale = sym.expand_dims(scale, axis=1, num_newaxis=num_newaxis)
         shift = sym.expand_dims(shift, axis=1, num_newaxis=num_newaxis)
     return x * scale + shift
Esempio n. 3
0
def nn(m: Model):
    v_images = sym.Variable("images", shape=(BATCH_SIZE, 1, 28, 28), dtype=0)
    v_true_labels = sym.Variable("true_labels",
                                 shape=(BATCH_SIZE, 10),
                                 dtype=0)

    x = v_images
    x = sym.reshape(data=x, shape=(BATCH_SIZE, 28 * 28))
    x = sym.dense(data=x, units=10)
    logits = x

    x = -sym.elemwise_mul(v_true_labels, sym.log_softmax(x))
    loss = sym.sum(x) / BATCH_SIZE

    # This is not really accuracy, because we use softmax instead of hardmax
    accuracy = sym.sum(v_true_labels * sym.softmax(logits)) / BATCH_SIZE

    # We have to somehow list all weights (the corresponding variables are generated automatically)
    weight_vars = [
        v for v in loss.list_input_variables()
        if v.attr('name') not in ['images', 'true_labels']
    ]

    optimizer = SGD(learning_rate=1e-4)
    update_step = optimizer.minimize(loss, var=weight_vars)

    tgraph = nnvm.graph.create(sym.Group(
        [loss, update_step])).apply("InferShape").apply("InferType")
    fgraph = nnvm.graph.create(sym.Group(
        [loss, accuracy])).apply("InferShape").apply("InferType")

    m.tgraph = tgraph
    m.fgraph = fgraph
    m.optimizer = optimizer
    m.loss = loss
    return m
def test_cnn_gradients():
    # input data
    h = 128
    w = 128
    data_shape = (1000, 3, h, w)
    data = sym.Variable('data', shape=data_shape, dtype=0)

    # conv2d
    num_channels = 64
    kernel_size = 32
    conv_w_shape = (num_channels, 3, kernel_size, kernel_size)
    conv_b_shape = (num_channels, )
    conv_w = sym.Variable('conv_w', shape=conv_w_shape)
    conv_b = sym.Variable('conv_b', shape=conv_b_shape)
    conv1 = sym.conv2d(data=data,
                       weight=conv_w,
                       bias=conv_b,
                       channels=num_channels,
                       kernel_size=(kernel_size, kernel_size),
                       name='conv1')
    # relu1
    relu1 = sym.relu(data=conv1, name='relu1')
    # max pooling
    max_pooling1 = sym.max_pool2d(data=relu1,
                                  pool_size=(2, 2),
                                  name='max_pooling1')
    # flatten
    flatten1 = sym.flatten(data=max_pooling1)
    # shape after flatten
    flatten_out_shape = (h - kernel_size) * (w - kernel_size) * num_channels
    # dense1
    dense1_hidden_units = 100
    dense1 = sym.dense(data=flatten1, name='dense1', units=dense1_hidden_units)
    # relu2
    relu2 = sym.relu(data=dense1, name='relu2')
    # dense2
    dense2_hidden_units = 10
    dense2 = sym.dense(data=relu2, name='dense2', units=dense2_hidden_units)
    # softmax
    mlp = sym.softmax(data=dense2, name='softmax')
    # fake non-sparse label
    label = sym.full_like(mlp, fill_value=1)
    # cross entropy loss
    ce_loss = sym.sum(sym.elemwise_mul(sym.log_softmax(dense2), label),
                      axis=1,
                      keepdims=True,
                      name="ce_loss")

    # input variables:
    # print grad_g.symbol.list_input_names()
    # >> ['data', 'conv_w', 'conv_b',
    #     'dense1_weight', 'dense1_bias',
    #     'dense2_weight', 'dense2_bias']

    # output gradient variables:
    # print grad_g.symbol.list_output_names()
    # >> ['conv1_grad_data', 'conv1_grad_weight', 'conv1_grad_bias',
    #     'dense1_grad_weight', 'dense1_grad_bias',
    #     'dense2_grad_weight', 'dense2_grad_bias']
    grad_g = graph_util.get_gradient_graph(ce_loss,
                                           ce_loss.list_input_variables())

    # infer shape
    in_shapes, out_shapes = graph_util.infer_shape(grad_g)

    # forward graph shape
    assert in_shapes == [
        list(data_shape),
        list(conv_w_shape),
        list(conv_b_shape), [dense1_hidden_units, flatten_out_shape],
        [dense1_hidden_units], [dense2_hidden_units, dense1_hidden_units],
        [dense2_hidden_units]
    ]
    # input grads shape should be equal with input shape
    assert in_shapes == out_shapes

    # output grads w.r.t input variables
    grads = graph_util.gradients(ce_loss, ce_loss.list_input_variables())

    # gradients number should be equal with grad_input number
    assert len(grads) == len(ce_loss.list_input_variables())

    # infer type
    in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g)
    assert out_dtypes == [
        'float32', 'float32', 'float32', 'float32', 'float32', 'float32',
        'float32'
    ]
Esempio n. 5
0
def test_cnn_gradients():
    # input data
    h = 128
    w = 128
    data_shape = (1000, 3, h, w)
    data = sym.Variable('data', shape=data_shape, dtype=0)

    # conv2d
    num_channels = 64
    kernel_size = 32
    conv_w_shape = (num_channels, 3, kernel_size, kernel_size)
    conv_b_shape = (num_channels,)
    conv_w = sym.Variable('conv_w', shape=conv_w_shape)
    conv_b = sym.Variable('conv_b', shape=conv_b_shape)
    conv1 = sym.conv2d(data=data, weight=conv_w, bias=conv_b,
                      channels=num_channels, kernel_size=(kernel_size, kernel_size),
                      name='conv1')
    # relu1
    relu1 = sym.relu(data=conv1, name='relu1')
    # max pooling
    max_pooling1 = sym.max_pool2d(data=relu1, pool_size=(2, 2), name='max_pooling1')
    # flatten
    flatten1 = sym.flatten(data=max_pooling1)
    # shape after flatten
    flatten_out_shape = (h - kernel_size) * (w - kernel_size) * num_channels
    # dense1
    dense1_hidden_units = 100
    dense1 = sym.dense(data=flatten1, name='dense1', units=dense1_hidden_units)
    # relu2
    relu2 = sym.relu(data=dense1, name='relu2')
    # dense2
    dense2_hidden_units = 10
    dense2 = sym.dense(data=relu2, name='dense2', units=dense2_hidden_units)
    # softmax
    mlp = sym.softmax(data=dense2, name='softmax')
    # fake non-sparse label
    label = sym.full_like(mlp, fill_value=1)
    # cross entropy loss
    ce_loss = sym.sum(
        sym.elemwise_mul(sym.log_softmax(dense2), label),
        axis=1,
        keepdims=True,
        name="ce_loss")

    # input variables:
    # print grad_g.symbol.list_input_names()
    # >> ['data', 'conv_w', 'conv_b',
    #     'dense1_weight', 'dense1_bias',
    #     'dense2_weight', 'dense2_bias']

    # output gradient variables:
    # print grad_g.symbol.list_output_names()
    # >> ['conv1_grad_data', 'conv1_grad_weight', 'conv1_grad_bias',
    #     'dense1_grad_weight', 'dense1_grad_bias',
    #     'dense2_grad_weight', 'dense2_grad_bias']
    grad_g = graph_util.get_gradient_graph(ce_loss, ce_loss.list_input_variables())

    # infer shape
    in_shapes, out_shapes = graph_util.infer_shape(grad_g)

    # forward graph shape
    assert in_shapes == [list(data_shape), list(conv_w_shape), list(conv_b_shape),
                          [dense1_hidden_units, flatten_out_shape], [dense1_hidden_units],
                          [dense2_hidden_units, dense1_hidden_units], [dense2_hidden_units]]
    # input grads shape should be equal with input shape
    assert in_shapes == out_shapes

    # output grads w.r.t input variables
    grads = graph_util.gradients(ce_loss, ce_loss.list_input_variables())

    # gradients number should be equal with grad_input number
    assert len(grads) == len(ce_loss.list_input_variables())

    # infer type
    in_dtypes, out_dtypes = graph_util.infer_dtype(grad_g)
    assert out_dtypes == ['float32', 'float32', 'float32', 'float32', 'float32', 'float32', 'float32']