def verify_concatenate(ishape, axis):
    x = [sym.Variable("x%d" % i, shape=ishape[i]) for i in range(len(ishape))]
    y = sym.concatenate(*x, axis=axis) + 1

    def forward(**kwargs):
        return np.concatenate(list(kwargs.values()), axis=axis) + 1

    check_function(y, forward)
def verify_split(ishape, indices_or_sections, axis):
    x = sym.Variable("x", shape=ishape)
    y = sym.split(x, indices_or_sections=indices_or_sections, axis=axis)

    def forward(x):
        return np.split(x, indices_or_sections, axis=axis)

    check_function(y, forward)
Esempio n. 3
0
def verify_concatenate(ishape, axis):
    x = [sym.Variable("x%d" % i, shape=ishape[i]) for i in range(len(ishape))]
    y = sym.concatenate(*x, axis=axis) + 1

    def forward(**kwargs):
        return np.concatenate(list(kwargs.values()), axis=axis) + 1

    check_function(y, forward)
Esempio n. 4
0
def verify_split(ishape, indices_or_sections, axis):
    x = sym.Variable("x", shape=ishape)
    y = sym.split(x, indices_or_sections=indices_or_sections, axis=axis)

    def forward(x):
        return np.split(x, indices_or_sections, axis=axis)

    check_function(y, forward)
Esempio n. 5
0
def test_prelu_nhwc():
    x = sym.Variable("x")
    a = sym.Variable("a")
    y = sym.prelu(data=x, alpha=a, axis=3)

    def forward(x, a):
        return (x < 0) * (x * a.reshape(1, 1, 3)) + (x>=0) * x

    shape = {'x': (1, 32, 32, 3), 'a': (3,)}
    check_function(y, forward, shape=shape)
def test_prelu_nhwc():
    x = sym.Variable("x")
    a = sym.Variable("a")
    y = sym.prelu(data=x, alpha=a, axis=3)

    def forward(x, a):
        return (x < 0) * (x * a.reshape(1, 1, 3)) + (x >= 0) * x

    shape = {'x': (1, 32, 32, 3), 'a': (3, )}
    check_function(y, forward, shape=shape)
Esempio n. 7
0
 def _check_function_must_fail(*args, **kwargs):
     error = AssertionError
     if 'error' in kwargs:
         error = kwargs['error']
         del kwargs['error']
     try:
         check_function(*args, quiet=True, **kwargs)
     except error:
         pass
     else:
         raise AssertionError("check_function didn't raise an exception")
Esempio n. 8
0
def test_pad():
    x = sym.Variable("x")
    y = sym.pad(x, pad_width=((0, 0), (0, 0), (0, 1), (2, 3)), pad_value=1.)

    def forward(x):
        return np.pad(x,
                      pad_width=((0, 0), (0, 0), (0, 1), (2, 3)),
                      mode='constant', constant_values=1.)

    shape = {'x': (1, 3, 28, 28)}
    check_function(y, forward, shape=shape)
 def _check_function_must_fail(*args, **kwargs):
     error = AssertionError
     if 'error' in kwargs:
         error = kwargs['error']
         del kwargs['error']
     try:
         check_function(*args, quiet=True, **kwargs)
     except error:
         pass
     else:
         raise AssertionError("check_function didn't raise an exception")
Esempio n. 10
0
def test_pad():
    x = sym.Variable("x")
    y = sym.pad(x, pad_width=((0, 0), (0, 0), (0, 1), (2, 3)), pad_value=1.)

    def forward(x):
        return np.pad(x,
                      pad_width=((0, 0), (0, 0), (0, 1), (2, 3)),
                      mode='constant', constant_values=1.)

    shape = {'x': (1, 3, 28, 28)}
    check_function(y, forward, shape=shape)
Esempio n. 11
0
def test_log():
    x = sym.Variable("x")
    y = sym.log(x)

    def forward(x):
        return np.log(x)

    def backward(head_grads, x):
        return [1. / x * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, in_range=(0.002, 2.0), shape=shape)
Esempio n. 12
0
def test_exp():
    x = sym.Variable("x")
    y = sym.exp(x)

    def forward(x):
        return np.exp(x)

    def backward(head_grads, x):
        return [np.exp(x) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
def test_log():
    x = sym.Variable("x")
    y = sym.log(x)

    def forward(x):
        return np.log(x)

    def backward(head_grads, x):
        return [1. / x * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, in_range=(0.002, 2.0), shape=shape)
def test_exp():
    x = sym.Variable("x")
    y = sym.exp(x)

    def forward(x):
        return np.exp(x)

    def backward(head_grads, x):
        return [np.exp(x) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 15
0
def verify_elemwise_sum(num_args):
    s = [sym.Variable("input" + str(i)) for i in range(num_args)]
    y = sym.elemwise_sum(*s, num_args=num_args)

    def forward(**inputs):
        return np.sum(np.array(list(inputs.values())), axis=0)

    def backward(head_grads, **inputs):
        return [head_grads] * num_args

    shape = {s[i]: (3, 4, 5) for i in range(num_args)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 16
0
def verify_elemwise_sum(num_args):
    s = [sym.Variable("input" + str(i)) for i in range(num_args)]
    y = sym.elemwise_sum(*s, num_args=num_args)

    def forward(**inputs):
        return np.sum(np.array(list(inputs.values())), axis=0)

    def backward(head_grads, **inputs):
        return [head_grads] * num_args

    shape = {s[i]: (3, 4, 5) for i in range(num_args)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 17
0
def test_sigmoid():
    x = sym.Variable("x")
    y = sym.sigmoid(x)

    def forward(x):
        return 1.0 / (1.0 + np.exp(-x))

    def backward(head_grads, x):
        y_np = forward(x)
        return [y_np *(1 - y_np) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 18
0
def test_tanh():
    x = sym.Variable("x")
    y = sym.tanh(x)

    def forward(x):
        return np.sinh(x) / np.cosh(x)

    def backward(head_grads, x):
        y_np = forward(x)
        return [(1 - y_np**2) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 19
0
def test_less():
    l = sym.Variable("l")
    r = sym.Variable("r")
    y = sym.less(l, r)

    def forward(l, r):
        return np.less(l, r).astype("float32")

    def backward(head_grads, l, r):
        return {'l': np.zeros_like(l)}

    shape = {'l': (3, 4, 5), 'r': (3, 4, 5)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 20
0
def test_reshape_like():
    x = sym.Variable("x")
    y = sym.Variable("y")
    z = sym.reshape_like(x, y)

    def forward(x, y):
        return np.reshape(x, y.shape)

    def backward(head_grads, x, y):
        return [np.reshape(head_grads, x.shape), np.zeros_like(y)]

    shape = {'x': (3, 4, 5), 'y': (5, 4, 3)}
    check_function(z, forward, backward, shape=shape)
Esempio n. 21
0
def test_sym_scalar_pow():
    scalar = 3
    x = sym.Variable("x")
    y = x**scalar

    def forward(x):
        return x**scalar

    def backward(head_grads, x):
        return [scalar * x**(scalar -  1) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 22
0
def test_scalar_sym_pow():
    scalar = 3
    x = sym.Variable("x")
    y = scalar**x

    def forward(x):
        return scalar**x

    def backward(head_grads, x):
        return [np.log(scalar) * scalar**x * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 23
0
def test_less():
    l = sym.Variable("l")
    r = sym.Variable("r")
    y = sym.less(l, r)

    def forward(l, r):
        return np.less(l, r).astype("float32")

    def backward(head_grads, l, r):
        return {'l': np.zeros_like(l)}

    shape = {'l': (3, 4, 5), 'r': (3, 4, 5)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 24
0
def test_block_grad():
    x = sym.Variable("x")
    y = sym.block_grad(x)

    def forward(x):
        return x

    def backward(head_grads, x):
        return [np.zeros_like(head_grads)]

    shape = {'x': (3, 4, 5)}
    # Numerical grad checking would fail for this function
    check_function(y, forward, backward, shape=shape, numerical_grads=False)
def test_sigmoid():
    x = sym.Variable("x")
    y = sym.sigmoid(x)

    def forward(x):
        return 1.0 / (1.0 + np.exp(-x))

    def backward(head_grads, x):
        y_np = forward(x)
        return [y_np * (1 - y_np) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
def test_scalar_sym_pow():
    scalar = 3
    x = sym.Variable("x")
    y = scalar**x

    def forward(x):
        return scalar**x

    def backward(head_grads, x):
        return [np.log(scalar) * scalar**x * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
def test_sym_scalar_pow():
    scalar = 3
    x = sym.Variable("x")
    y = x**scalar

    def forward(x):
        return x**scalar

    def backward(head_grads, x):
        return [scalar * x**(scalar - 1) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
def test_tanh():
    x = sym.Variable("x")
    y = sym.tanh(x)

    def forward(x):
        return np.sinh(x) / np.cosh(x)

    def backward(head_grads, x):
        y_np = forward(x)
        return [(1 - y_np**2) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 29
0
def test_reshape_like():
    x = sym.Variable("x")
    y = sym.Variable("y")
    z = sym.reshape_like(x, y)

    def forward(x, y):
        return np.reshape(x, y.shape)

    def backward(head_grads, x, y):
        return [np.reshape(head_grads, x.shape),
                np.zeros_like(y)]

    shape = {'x': (3, 4, 5), 'y': (5, 4, 3)}
    check_function(z, forward, backward, shape=shape)
Esempio n. 30
0
def test_block_grad():
    x = sym.Variable("x")
    y = sym.block_grad(x)

    def forward(x):
        return x

    def backward(head_grads, x):
        return [np.zeros_like(head_grads)]


    shape = {'x': (3, 4, 5)}
    # Numerical grad checking would fail for this function
    check_function(y, forward, backward, shape=shape, numerical_grads=False)
def test_relu():
    x = sym.Variable("x")
    y = sym.relu(sym.leaky_relu(x, alpha=0.3) - 0.2)

    def forward(x):
        x = (x < 0) * x * 0.3 + (x > 0) * x - 0.2
        return (x > 0) * x

    def backward(head_grads, x):
        sub = (x < 0) * x * 0.3 + (x > 0) * x - 0.2
        return [(sub > 0).astype("float") * \
                ((x > 0).astype("float") + 0.3 * (x < 0).astype("float")) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 32
0
def verify_squeeze(shape, axis):
    x = sym.Variable("x")
    if axis is not None:
        y = sym.squeeze(x, axis=axis)
    else:
        y = sym.squeeze(x)
    y = y + 1

    def forward(x):
        return np.squeeze(x, axis=axis) + 1

    def backward(head_grads, x):
        return [np.reshape(head_grads, x.shape)]

    check_function(y, forward, backward, shape=shape)
Esempio n. 33
0
def test_relu():
    x = sym.Variable("x")
    y = sym.relu(sym.leaky_relu(x, alpha=0.3) - 0.2)

    def forward(x):
        x = (x < 0) * x * 0.3 + (x > 0) * x - 0.2
        return (x > 0) * x

    def backward(head_grads, x):
        sub = (x < 0) * x * 0.3 + (x > 0) * x - 0.2
        return [(sub > 0).astype("float") * \
                ((x > 0).astype("float") + 0.3 * (x < 0).astype("float")) * head_grads]

    shape = {'x': (1, 3, 32, 32)}
    check_function(y, forward, backward, shape=shape)
def verify_squeeze(shape, axis):
    x = sym.Variable("x")
    if axis is not None:
        y = sym.squeeze(x, axis=axis)
    else:
        y = sym.squeeze(x)
    y = y + 1

    def forward(x):
        return np.squeeze(x, axis=axis) + 1

    def backward(head_grads, x):
        return [np.reshape(head_grads, x.shape)]

    check_function(y, forward, backward, shape=shape)
def verify_lrn(ishape, size, axis, bias, alpha, beta):
    x = sym.Variable("x", shape=ishape)
    y = sym.lrn(x, size=size, axis=axis, bias=bias, alpha=alpha, beta=beta)

    def forward1(x):
        return topi.testing.lrn_python(x, size, axis, bias, alpha, beta)

    check_function(y, forward1)

    def forward2(x):
        y = forward1(x)
        return (y > 0) * y

    #Checking LRN op followed by elementwise op relu
    check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)})
Esempio n. 36
0
def verify_l2_normalize(ishape, eps, axis):
    x = sym.Variable("x", shape=ishape)
    y = sym.l2_normalize(x, eps=eps, axis=axis)

    def forward1(x):
        return topi.testing.l2_normalize_python(x, eps, axis)

    check_function(y, forward1)

    def forward2(x):
        y = forward1(x)
        return (y > 0)*y

    #Checking L2 normalization op followed by elementwise op relu
    check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)})
Esempio n. 37
0
def verify_lrn(ishape, size, axis, bias, alpha, beta):
    x = sym.Variable("x", shape=ishape)
    y = sym.lrn(x, size=size, axis=axis, bias=bias, alpha=alpha, beta=beta)

    def forward1(x):
        return topi.testing.lrn_python(x, size, axis, bias, alpha, beta)

    check_function(y, forward1)

    def forward2(x):
        y = forward1(x)
        return (y > 0)*y

    #Checking LRN op followed by elementwise op relu
    check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)})
def verify_l2_normalize(ishape, eps, axis):
    x = sym.Variable("x", shape=ishape)
    y = sym.l2_normalize(x, eps=eps, axis=axis)

    def forward1(x):
        return topi.testing.l2_normalize_python(x, eps, axis)

    check_function(y, forward1)

    def forward2(x):
        y = forward1(x)
        return (y > 0) * y

    #Checking L2 normalization op followed by elementwise op relu
    check_function(sym.relu(y), forward2, in_range={'x': (-10.0, 10.0)})
Esempio n. 39
0
def check_map(symfunc,
              np_func,
              np_backward=None,
              dtype="float32",
              rnd_min=-1,
              rnd_max=1):
    x = sym.Variable("x")
    y = symfunc(x)
    shape = {'x': (1, 3, 32, 32)}
    check_function(y,
                   lambda x: np_func(x),
                   np_backward,
                   dtype=dtype,
                   shape=shape,
                   in_range=(rnd_min, rnd_max))
Esempio n. 40
0
def verify_take(src_shape, indices_src, axis=None):
    src_dtype = "float32"
    indices_dtype = "int32"
    indices_src = np.array(indices_src, dtype=indices_dtype)
    a = sym.Variable("a", shape=src_shape)
    indices = sym.Variable("indices", shape=indices_src.shape)
    y = sym.take(a, indices, axis=axis)

    def forward(a, indices):
        return np.take(a, indices=indices, axis=axis)

    a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape)

    check_function(y, forward,
                   dtype={'a': src_dtype, 'indices': indices_dtype},
                   values={'a': a_src, 'indices': indices_src})
Esempio n. 41
0
def verify_take(src_shape, indices_src, axis=None):
    src_dtype = "float32"
    indices_dtype = "int32"
    indices_src = np.array(indices_src, dtype=indices_dtype)
    a = sym.Variable("a", shape=src_shape)
    indices = sym.Variable("indices", shape=indices_src.shape)
    y = sym.take(a, indices, axis=axis)

    def forward(a, indices):
        return np.take(a, indices=indices, axis=axis)

    a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape)

    check_function(y, forward,
                   dtype={'a': src_dtype, 'indices': indices_dtype},
                   values={'a': a_src, 'indices': indices_src})
Esempio n. 42
0
def test_log_softmax():
    x = sym.Variable("x")
    y = sym.log_softmax(x)

    def forward(x):
        return topi.testing.log_softmax_python(x)

    def backward(head_grads, x):
        y = topi.testing.log_softmax_python(x)
        grad = head_grads - np.exp(y) * np.sum(head_grads, axis=1, keepdims=True)
        return [grad]

    check_function(y, forward, backward,
                   shape={'x': (10, 1000)}, numerical_grads=False)
    check_function(y, forward, backward,
                   shape={'x': (2, 10)})
Esempio n. 43
0
def test_clip():
    x = sym.Variable("x")
    a_min=0.2
    a_max=0.75
    y = sym.clip(x, a_min=a_min, a_max=a_max)

    def forward(x):
        return np.clip(x, a_min=a_min, a_max=a_max)

    def backward(head_grads, x):
        mask1 = np.greater_equal(x, a_min).astype("float")
        mask2 = np.less_equal(x, a_max).astype("float")
        return [head_grads * mask1 * mask2]

    shape = {'x': (3, 4, 5)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 44
0
def verify_gather_nd(src_shape, indices_src):
    src_dtype = "float32"
    indices_dtype = "int32"
    indices_src = np.array(indices_src, dtype=indices_dtype)
    a = sym.Variable("a", shape=src_shape)
    indices = sym.Variable("indices", shape=indices_src.shape)
    y = sym.gather_nd(a, indices)

    def forward(a, indices):
        return topi.testing.gather_nd_python(a, indices)

    a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape)

    check_function(y, forward,
                   dtype={'a': src_dtype, 'indices': indices_dtype},
                   values={'a': a_src, 'indices': indices_src})
Esempio n. 45
0
def test_log_softmax():
    x = sym.Variable("x")
    y = sym.log_softmax(x)

    def forward(x):
        return topi.testing.log_softmax_python(x)

    def backward(head_grads, x):
        y = topi.testing.log_softmax_python(x)
        grad = head_grads - np.exp(y) * np.sum(head_grads, axis=1, keepdims=True)
        return [grad]

    check_function(y, forward, backward,
                   shape={'x': (10, 1000)}, numerical_grads=False)
    check_function(y, forward, backward,
                   shape={'x': (2, 10)})
Esempio n. 46
0
def test_clip():
    x = sym.Variable("x")
    a_min = 0.2
    a_max = 0.75
    y = sym.clip(x, a_min=a_min, a_max=a_max)

    def forward(x):
        return np.clip(x, a_min=a_min, a_max=a_max)

    def backward(head_grads, x):
        mask1 = np.greater_equal(x, a_min).astype("float")
        mask2 = np.less_equal(x, a_max).astype("float")
        return [head_grads * mask1 * mask2]

    shape = {'x': (3, 4, 5)}
    check_function(y, forward, backward, shape=shape)
Esempio n. 47
0
def verify_strided_slice(ishape, begin, end, strideinp=None):
    stride = strideinp if strideinp else [1, 1, 1]
    x = sym.Variable("x", shape=ishape)
    if strideinp:
        y = sym.strided_slice(x, begin = begin, end = end, stride = stride) + 1
    else:
        y = sym.strided_slice(x, begin = begin, end = end) + 1

    for i in range(len(begin), 3):
        begin.append(0)
    for i in range(len(end), 3):
        end.append(ishape[i])

    def test_forward(x):
        return x[begin[0]:end[0]:stride[0],
                    begin[1]:end[1]:stride[1], begin[2]:end[2]:stride[2]] + 1

    check_function(y, test_forward)
def verify_strided_slice(ishape, begin, end, strideinp=None):
    stride = strideinp if strideinp else [1, 1, 1]
    x = sym.Variable("x", shape=ishape)
    if strideinp:
        y = sym.strided_slice(x, begin=begin, end=end, stride=stride) + 1
    else:
        y = sym.strided_slice(x, begin=begin, end=end) + 1

    for i in range(len(begin), 3):
        begin.append(0)
    for i in range(len(end), 3):
        end.append(ishape[i])

    def test_forward(x):
        return x[begin[0]:end[0]:stride[0], begin[1]:end[1]:stride[1],
                 begin[2]:end[2]:stride[2]] + 1

    check_function(y, test_forward)
Esempio n. 49
0
def verify_expand_like(in_shape, out_shape, axis, exclude):
    x = sym.Variable("x")
    y = sym.Variable("y")
    z = sym.expand_like(x, y, axis=axis, exclude=exclude)

    def forward(x, y):
        odim = len(out_shape)

        if len(x.shape) == len(y.shape):
            return np.broadcast_to(x, y.shape)

        if x.shape == (1, ) and len(y.shape) == odim:
            x = np.reshape(x, ())

        real_axis = [i if i >= 0 else i + odim for i in axis]
        real_axis = sorted(real_axis)
        if exclude:
            real_axis = list(set(range(odim)) - set(real_axis))
        for i in real_axis:
            x = np.expand_dims(x, i).astype(x.dtype)
        for i in real_axis:
            x = np.concatenate([x] * out_shape[i], axis=i).astype(x.dtype)

        return x

    def backward(head_grads, x, y):
        odim = len(out_shape)

        keepdims = len(x.shape) == len(y.shape)

        if x.shape == (1, ) and len(y.shape) == odim:
            x = np.reshape(x, ())

        real_axis = [i if i >= 0 else i + odim for i in axis]
        real_axis = sorted(real_axis)
        if exclude:
            real_axis = list(set(range(odim)) - set(real_axis))
        return [
            np.sum(head_grads, axis=tuple(real_axis), keepdims=keepdims),
            np.zeros_like(y)
        ]

    shape = {'x': in_shape, 'y': out_shape}
    check_function(z, forward, backward, shape=shape)
Esempio n. 50
0
def verify_expand_like(in_shape, out_shape, axis, exclude):
    x = sym.Variable("x")
    y = sym.Variable("y")
    z = sym.expand_like(x, y, axis=axis, exclude=exclude)

    def forward(x, y):
        odim = len(out_shape)

        if len(x.shape) == len(y.shape):
            return np.broadcast_to(x, y.shape)

        if x.shape == (1,) and len(y.shape) == odim:
            x = np.reshape(x, ())

        real_axis = [i if i >= 0 else i + odim for i in axis]
        real_axis = sorted(real_axis)
        if exclude:
            real_axis = list(set(range(odim)) - set(real_axis))
        for i in real_axis:
            x = np.expand_dims(x, i).astype(x.dtype)
        for i in real_axis:
            x = np.concatenate([x]*out_shape[i], axis=i).astype(x.dtype)

        return x

    def backward(head_grads, x, y):
        odim = len(out_shape)

        keepdims = len(x.shape) == len(y.shape)

        if x.shape == (1,) and len(y.shape) == odim:
            x = np.reshape(x, ())

        real_axis = [i if i >= 0 else i + odim for i in axis]
        real_axis = sorted(real_axis)
        if exclude:
            real_axis = list(set(range(odim)) - set(real_axis))
        return [np.sum(head_grads, axis=tuple(real_axis), keepdims=keepdims),
                np.zeros_like(y)]


    shape = {'x': in_shape, 'y': out_shape}
    check_function(z, forward, backward, shape=shape)
Esempio n. 51
0
def test_dense():
    x = sym.Variable("x", shape=(10, 100))
    w = sym.Variable("dense_weight", shape=(3, 100))
    b = sym.Variable("dense_bias", shape=(3,))
    y = sym.dense(x, w, b, use_bias=True, units=3, name="dense")
    y = sym.flatten(y)

    def forward(x, dense_weight, dense_bias):
        return np.dot(x, dense_weight.T) + dense_bias
    shape = {
        'x': (10, 100),
        'w': (3, 100),
        'b': (3,)
    }
    # Don't check gradients on cuda because is doesn't yet support ewise after reduce
    check_function(y, forward, shape=shape,
                   exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, forward, shape=shape,
                   only_targets={'cuda'}, numerical_grads=False)
Esempio n. 52
0
def test_dense():
    x = sym.Variable("x", shape=(10, 100))
    w = sym.Variable("dense_weight", shape=(3, 100))
    b = sym.Variable("dense_bias", shape=(3,))
    y = sym.dense(x, w, b, use_bias=True, units=3, name="dense")
    y = sym.flatten(y)

    def forward(x, dense_weight, dense_bias):
        return np.dot(x, dense_weight.T) + dense_bias
    shape = {
        'x': (10, 100),
        'w': (3, 100),
        'b': (3,)
    }
    # Don't check gradients on cuda because is doesn't yet support ewise after reduce
    check_function(y, forward, shape=shape,
                   exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, forward, shape=shape,
                   only_targets={'cuda'}, numerical_grads=False)
def test_batchnorm():
    x = sym.Variable("x")
    beta = sym.Variable("beta")
    gamma = sym.Variable("gamma")
    moving_var = sym.Variable("moving_var")
    moving_mean = sym.Variable("moving_mean")
    eps = 1e-5
    y = sym.batch_norm(x, gamma, beta, moving_mean, moving_var, epsilon=eps)

    def forward(x, gamma, beta, moving_mean, moving_var):
        return (x - moving_mean) / np.sqrt(moving_var + eps) * gamma + beta

    shape = {
        'x': (10, 20),
        'gamma': (20, ),
        'beta': (20, ),
        'moving_mean': (20, ),
        'moving_var': (20, )
    }

    check_function(y, forward, in_range=(0.001, 1.0), shape=shape)
Esempio n. 54
0
def test_batchnorm():
    x = sym.Variable("x")
    beta = sym.Variable("beta")
    gamma = sym.Variable("gamma")
    moving_var = sym.Variable("moving_var")
    moving_mean = sym.Variable("moving_mean")
    eps = 1e-5
    y = sym.batch_norm(
        x, gamma, beta, moving_mean, moving_var, epsilon=eps)

    def forward(x, gamma, beta, moving_mean, moving_var):
        return (x - moving_mean) / np.sqrt(moving_var + eps) * gamma + beta

    shape = {
        'x': (10, 20),
        'gamma': (20,),
        'beta': (20,),
        'moving_mean': (20,),
        'moving_var': (20,)
    }

    check_function(y, forward, in_range=(0.001, 1.0), shape=shape)
def verify_gather_nd(src_shape, indices_src):
    src_dtype = "float32"
    indices_dtype = "int32"
    indices_src = np.array(indices_src, dtype=indices_dtype)
    a = sym.Variable("a", shape=src_shape)
    indices = sym.Variable("indices", shape=indices_src.shape)
    y = sym.gather_nd(a, indices)

    def forward(a, indices):
        return topi.testing.gather_nd_python(a, indices)

    a_src = np.arange(np.prod(src_shape), dtype=src_dtype).reshape(src_shape)

    check_function(y,
                   forward,
                   dtype={
                       'a': src_dtype,
                       'indices': indices_dtype
                   },
                   values={
                       'a': a_src,
                       'indices': indices_src
                   })
Esempio n. 56
0
def test_broadcast():
    a = sym.Variable("a")
    b = sym.Variable("b")
    shape = {'a': (3, 4, 5), 'b': (1, 5)}

    def _collapse(g):
        return g.reshape(-1, shape['b'][-1]).sum(0, keepdims=True)

    y = sym.broadcast_add(a, b)
    def _backward_add(head_grads, a, b):
        da = head_grads
        db = _collapse(head_grads)
        return da, db
    check_function(y, lambda a, b: a + b, _backward_add, shape=shape)

    y = sym.broadcast_sub(a, b)
    def _backward_sub(head_grads, a, b):
        da = head_grads
        db = -_collapse(head_grads)
        return da, db
    check_function(y, lambda a, b: a - b, _backward_sub, shape=shape)

    y = sym.broadcast_mul(a, b)
    def _backward_mul(head_grads, a, b):
        da = head_grads * b
        db = _collapse(head_grads * a)
        return da, db
    check_function(y, lambda a, b: a * b, _backward_mul, shape=shape)

    y = sym.broadcast_div(a, b)
    def _backward_div(head_grads, a, b):
        da = head_grads / b
        db = _collapse(- head_grads * a / b**2)
        return da, db
    # We avoid computing numerical derivatives too close to zero here
    check_function(y, lambda a, b: a / b, _backward_div, shape=shape, numerical_grads=False)
    check_function(y, lambda a, b: a / b, _backward_div, shape=shape,
                   in_range={'b': (0.1, 20)})

    y = sym.broadcast_mod(a, b)
    check_function(y,
                   lambda a, b: np.mod(a, b),
                   in_range={'a': (0.001, 100), 'b': (1, 100)}, dtype='int32', shape=shape)

    y = sym.broadcast_max(a, b)
    check_function(y, lambda a, b: np.maximum(a, b), shape=shape)

    y = sym.broadcast_min(a, b)
    check_function(y, lambda a, b: np.minimum(a, b), shape=shape)

    y = sym.broadcast_pow(a, b)
    check_function(y,
                   lambda a, b: np.power(a, b),
                   in_range={'a': (0.001, 100), 'b': (0.001, 2)}, shape=shape)

    y = sym.broadcast_left_shift(a, b)
    check_function(y, lambda a, b: a << b, dtype='int32', shape=shape)

    y = sym.broadcast_right_shift(a, b)
    check_function(y, lambda a, b: a >> b, dtype='int32', shape=shape)

    y = sym.broadcast_greater(a, b)
    check_function(y, lambda a, b: np.greater(a, b), shape=shape)

    y = sym.broadcast_less(a, b)
    check_function(y, lambda a, b: np.less(a, b), shape=shape)

    y = sym.broadcast_equal(a, b)
    check_function(y, lambda a, b: np.equal(a, b),
                   in_range={'a': (-2, 2), 'b': (-2, 2)}, dtype='int32', shape=shape)

    y = sym.broadcast_not_equal(a, b)
    check_function(y, lambda a, b: np.not_equal(a, b),
                   in_range={'a': (-2, 2), 'b': (-2, 2)}, dtype='int32', shape=shape)

    y = sym.broadcast_greater_equal(a, b)
    check_function(y, lambda a, b: np.greater_equal(a, b),
                   in_range={'a': (-3, 3), 'b': (-3, 3)}, dtype='int32', shape=shape)

    y = sym.broadcast_less_equal(a, b)
    check_function(y, lambda a, b: np.less_equal(a, b),
                   in_range={'a': (-3, 3), 'b': (-3, 3)}, dtype='int32', shape=shape)
Esempio n. 57
0
def test_broadcast():
    a = sym.Variable("a")
    b = sym.Variable("b")
    shape = {'a': (3, 4, 5), 'b': (1, 5)}

    def _collapse(g):
        return g.reshape(-1, shape['b'][-1]).sum(0, keepdims=True)

    y = sym.broadcast_add(a, b)

    def _backward_add(head_grads, a, b):
        da = head_grads
        db = _collapse(head_grads)
        return da, db

    check_function(y, lambda a, b: a + b, _backward_add, shape=shape)

    y = sym.broadcast_sub(a, b)

    def _backward_sub(head_grads, a, b):
        da = head_grads
        db = -_collapse(head_grads)
        return da, db

    check_function(y, lambda a, b: a - b, _backward_sub, shape=shape)

    y = sym.broadcast_mul(a, b)

    def _backward_mul(head_grads, a, b):
        da = head_grads * b
        db = _collapse(head_grads * a)
        return da, db

    check_function(y, lambda a, b: a * b, _backward_mul, shape=shape)

    y = sym.broadcast_div(a, b)

    def _backward_div(head_grads, a, b):
        da = head_grads / b
        db = _collapse(-head_grads * a / b**2)
        return da, db

    # We avoid computing numerical derivatives too close to zero here
    check_function(y,
                   lambda a, b: a / b,
                   _backward_div,
                   shape=shape,
                   numerical_grads=False)
    check_function(y,
                   lambda a, b: a / b,
                   _backward_div,
                   shape=shape,
                   in_range={'b': (0.1, 20)})

    y = sym.broadcast_mod(a, b)
    check_function(y,
                   lambda a, b: np.mod(a, b),
                   in_range={
                       'a': (0.001, 100),
                       'b': (1, 100)
                   },
                   dtype='int32',
                   shape=shape)

    y = sym.broadcast_max(a, b)
    check_function(y, lambda a, b: np.maximum(a, b), shape=shape)

    y = sym.broadcast_min(a, b)
    check_function(y, lambda a, b: np.minimum(a, b), shape=shape)

    y = sym.broadcast_pow(a, b)
    check_function(y,
                   lambda a, b: np.power(a, b),
                   in_range={
                       'a': (0.001, 100),
                       'b': (0.001, 2)
                   },
                   shape=shape)

    y = sym.broadcast_left_shift(a, b)
    check_function(y, lambda a, b: a << b, dtype='int32', shape=shape)

    y = sym.broadcast_right_shift(a, b)
    check_function(y, lambda a, b: a >> b, dtype='int32', shape=shape)

    y = sym.broadcast_greater(a, b)
    check_function(y, lambda a, b: np.greater(a, b), shape=shape)

    y = sym.broadcast_less(a, b)
    check_function(y, lambda a, b: np.less(a, b), shape=shape)

    y = sym.broadcast_equal(a, b)
    check_function(y,
                   lambda a, b: np.equal(a, b),
                   in_range={
                       'a': (-2, 2),
                       'b': (-2, 2)
                   },
                   dtype='int32',
                   shape=shape)

    y = sym.broadcast_not_equal(a, b)
    check_function(y,
                   lambda a, b: np.not_equal(a, b),
                   in_range={
                       'a': (-2, 2),
                       'b': (-2, 2)
                   },
                   dtype='int32',
                   shape=shape)

    y = sym.broadcast_greater_equal(a, b)
    check_function(y,
                   lambda a, b: np.greater_equal(a, b),
                   in_range={
                       'a': (-3, 3),
                       'b': (-3, 3)
                   },
                   dtype='int32',
                   shape=shape)

    y = sym.broadcast_less_equal(a, b)
    check_function(y,
                   lambda a, b: np.less_equal(a, b),
                   in_range={
                       'a': (-3, 3),
                       'b': (-3, 3)
                   },
                   dtype='int32',
                   shape=shape)
Esempio n. 58
0
def backward(head_grads, x, conv_kernel, sparse_kernel, kernel, pad, stride,
             **args):
    return


dtype = "float32"
shape = {'x': (1, 1, 3, 3)}
localtime = time.asctime(time.localtime(time.time()))
print("Start time:" + localtime)
for _ in range(1):
    check_function(y,
                   forward=forward,
                   backward=backward,
                   numerical_grads=False,
                   values=np.ones(shape['x'], dtype),
                   dtype=dtype,
                   shape=shape,
                   additional_params={
                       'kernel': [3, 3],
                       'pad': [0, 0],
                       'stride': [1, 1]
                   })
localtime = time.asctime(time.localtime(time.time()))
print("End time:" + localtime)
'''
batch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)

opt_level = 3
Esempio n. 59
0
def test_check_function():
    # test the testing function

    x = sym.Variable("x")
    y = sym.Variable("y")

    # different styles of returning gradients from the backward function
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: [head_grads, 2*head_grads],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: (head_grads, 2*head_grads),
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: {'x': head_grads, 'y': 2*head_grads},
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: {'y': 2*head_grads},
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: [2*head_grads],
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: 2*head_grads,
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float32')
    check_function(x + 2*y, lambda x, y: x + 2*y,
                   lambda x, y, head_grads: 2*head_grads,
                   grad_input_vars=[y],
                   shape={'x': (1, 2), y: (1, 2)}, dtype='float64')

    # test just numerical gradients
    # different styles of shape and dtype passing
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)},
                   numerical_grads=True)
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype='float32',
                   numerical_grads=True)
    check_function(x + 2*y, shape={'x': (1, 2), y: (1, 2)}, dtype={x: 'float32', 'y': 'float32'},
                   numerical_grads=True)
    check_function(x + 2*y, shape=(1, 2), dtype='float32',
                   numerical_grads=True)

    # specifying variable attributes on variable creation
    # (in this case type codes must be used)
    x = sym.Variable("x", dtype=0, shape=(1, 2))
    check_function(x + 2*y, shape={y: (1, 2)}, dtype={'y': 'float32'}, numerical_grads=True)
    y = sym.Variable("y", dtype=0, shape=(1, 2))

    # shape overriding
    def _fwd1(x, y):
        assert x.shape == (1, 1)
        assert y.shape == (1, 2)
        return x + 2*y
    check_function(x + 2*y, _fwd1, shape={x: (1, 1)})

    # in_range
    def _fwd2(x, y):
        assert x.shape == (100,)
        assert (x <= 0.9).all()
        assert (x >= 0.8).all()
        return x + 2*y
    check_function(x + 2*y, _fwd2, shape=(100,), in_range=(0.8, 0.9), numerical_grads=False)
    check_function(x + 2*y, _fwd2, shape=(100,), in_range={'x': (0.8, 0.9)}, numerical_grads=False)
    check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0],
                   in_range={'head_grads_0': (1.0, 1.0)})
    # explicit passing of values
    check_function(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0],
                   values={'head_grads_0': np.full((1, 2), 1.0)})

    # check that the function reports errors
    def _check_function_must_fail(*args, **kwargs):
        error = AssertionError
        if 'error' in kwargs:
            error = kwargs['error']
            del kwargs['error']
        try:
            check_function(*args, quiet=True, **kwargs)
        except error:
            pass
        else:
            raise AssertionError("check_function didn't raise an exception")

    _check_function_must_fail(x + 2*y, error=ValueError)
    _check_function_must_fail(x + 2*y, lambda x, y: x + y)
    _check_function_must_fail(x + 2*y, backward=lambda x, y, head_grads: [1.0, 2.0])
    _check_function_must_fail(sym.block_grad(x + 2*y), numerical_grads=True)
    _check_function_must_fail(x*x, numerical_grads=True,
                              numerical_grads_params={'atol': 0.0, 'rtol': 0.0})
    _check_function_must_fail(sym.log(-x*x), numerical_grads=True, error=ValueError)

    # different styles of returning results from the forward function
    check_function(x + 2*y, lambda x, y: [x + 2*y], numerical_grads=False)
    _check_function_must_fail(x + 2*y, lambda x, y: [x + 2*y, x], numerical_grads=False,
                              error=ValueError)
    _check_function_must_fail(x + 2*y, lambda x, y: [], numerical_grads=False,
                              error=ValueError)

    # multiple outputs
    z = sym.Group([2*x + y, x + 2*y])
    check_function(z, lambda x, y: [2*x + y, x + 2*y])
    check_function(z, lambda x, y: (2*x + y, x + 2*y))
    check_function(z, backward=lambda x, y, head_grads: [2*head_grads[0] + head_grads[1],
                                                         head_grads[0] + 2*head_grads[1]])
    _check_function_must_fail(z, backward=lambda x, y, head_grads: [2*head_grads[0],
                                                                    2*head_grads[1]])
    check_function(z, backward=lambda x, y, head_grads: [head_grads[1], 2*head_grads[1]],
                   in_range={'head_grads_0': (0, 0)})
    check_function(z, numerical_grads=True)

    z = sym.Group([sym.block_grad(2*x + y), x + 2*y])
    check_function(z, lambda x, y: [2*x + y, x + 2*y], numerical_grads=False)
    _check_function_must_fail(z, lambda x, y: [2*x + y, x + 2*y])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2*x + y, sym.block_grad(x + 2*y)])
    _check_function_must_fail(z, numerical_grads=True)

    z = sym.Group([2*x + y, x + 2*y, x, y, sym.sum(x)])
    check_function(z, lambda x, y: [2*x + y, x + 2*y, x, y, np.sum(x)])

    # passing additional parameters to forward and backward
    def _fwd3(x, p):
        assert p == 'v'
        return x + 1
    def _bwd3(x, p, head_grads):
        assert p == 'v'
        return head_grads
    check_function(x + 1, _fwd3, _bwd3, additional_params={'p': 'v'})

    # implicitly created variables and shape/dtype inference for inputs
    x = sym.Variable("x", shape=(2, 3), dtype=0)
    b = sym.Variable("b")
    y = sym.dense(data=x, bias=b, units=4)
    # Don't check gradients on cuda because is doesn't yet support ewise after reduce
    check_function(y, exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, shape={'x': (3, 4)}, exclude_targets={'cuda'}, numerical_grads=True)
    check_function(y, dtype={'x': 'float64'}, exclude_targets={'cuda'}, numerical_grads=True)

    x = sym.Variable("x")
    b = sym.Variable("b")
    w = sym.Variable("w")
    y = sym.dense(data=x, bias=b, weight=w, units=4)
    def _fwd_dense(x, w, b):
        return np.dot(x, w.T) + b
    check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'x': 'float32'}, numerical_grads=False)
    check_function(y, _fwd_dense, shape={'x': (1,2)}, dtype={'w': 'float64'}, numerical_grads=False)
    _check_function_must_fail(y, _fwd_dense, shape={'x': (1,2)},
                              dtype={'w': 'float64', 'b': 'float32'},
                              numerical_grads=False,
                              error=nnvm._base.NNVMError)
    # fails because no shape
    _check_function_must_fail(y, _fwd_dense, numerical_grads=False, error=ValueError)
    # ok because type is float32 by default
    check_function(y, _fwd_dense, shape={'x': (1,2)}, numerical_grads=False)
Esempio n. 60
0
def check_map(symfunc, np_func, np_backward=None, dtype="float32", rnd_min=-1, rnd_max=1):
    x = sym.Variable("x")
    y = symfunc(x)
    shape = {'x': (1, 3, 32, 32)}
    check_function(y, lambda x: np_func(x), np_backward,
                   dtype=dtype, shape=shape, in_range=(rnd_min, rnd_max))