def test_ukf_estimate_map(self):
        residual = np.array([[0.06583802], [0.30857565]])
        P_zz = np.asarray([[1.01043425e-02, 3.41826761e-05],
                           [3.41826761e-05, 1.00712847e-02]])
        R = estimate_noise_ukf_map(residual, P_zz, 0.5, np.ones((2, 2)), False)
        assert R.shape == (2, 2)

        R = estimate_noise_ukf_map(residual, P_zz, 0.5, np.ones((2, 2)), True)
        assert R.shape == (2, 2)
Esempio n. 2
0
def perform_estimation(residual, tracker, index,
                       old_estimate, old_mean):
    average_factor = (1 - b) / (1 - b**(index + 1))
    mean = (1-average_factor) * old_mean + average_factor * residual
    residual -= mean
    estimate = estimate_noise_ukf_map(residual, tracker.Pz, average_factor,
                                      old_estimate, False)
    return estimate, mean
Esempio n. 3
0
def filtering(sim, tracker):
    # perform sensor simulation and filtering
    (readings, truths, filtered, residuals, Ps,
     map_estimations, map_estimations_convergence) = (
        [], [], [], [], [], [0], [0])
    cmds = [np.array([[0.6],
                      [0.23]])] * (num_samples / 4)
    cmds.extend([np.array([[2],
                           [-0.20]])] * (num_samples / 2))
    cmds.extend([np.array([[1],
                           [0.2]])] * (num_samples / 4))
    for index, cmd in enumerate(cmds):
        sim.step(cmd)
        R = R_proto * measurement_var
        reading = sim.read(R)
        tracker.predict(fx_args=cmd)
        tracker.update(reading[:, 0])
        readings.append(reading)
        truths.append(sim.x)
        filtered.append(copy(tracker.x))
        Ps.append(copy(tracker.P))
        residual = tracker.y[:, np.newaxis]
        residuals.append(residual)
        starting_index = skip_initial
        if index > starting_index:
            average_factor = (1 - map_b) / (1 -
                                           map_b**(index - starting_index))
            estimate = estimate_noise_ukf_map(
                residual, tracker.Pz, average_factor,
                map_estimations[-1], False)
            estimate_convergence = estimate_noise_ukf_map(
                residual, tracker.Pz, average_factor,
                map_estimations_convergence[-1], True)
            map_estimations.append(estimate)
            map_estimations_convergence.append(estimate_convergence)

    readings = np.asarray(readings)
    truths = np.asarray(truths)
    filtered = np.asarray(filtered)
    Ps = np.asarray(Ps)
    residuals = np.asarray(residuals)
    return (readings, truths, filtered, residuals, Ps,
            map_estimations[-1], map_estimations_convergence[-1])
Esempio n. 4
0
def filtering(sim, tracker):
    R = R_proto * sim_var

    readings, filtered, residuals, Ps, map_estimations = [], [], [], [], [0]
    r_mean = 0
    estimation_started = False
    for index in range(sample_size + skip_samples):
        time, reading = sim.read(R)
        measurement = reading[0:2]
        controls = reading[2:]
        # skip low velocities
        if measurement[1, 0] < 0.5:
            continue
        tracker.predict(fx_args=controls)
        tracker.update(measurement[:, 0])

        readings.append(reading)
        filtered.append(copy(tracker.x[:, np.newaxis]))
        Ps.append(copy(tracker.P))
        residual = tracker.y[:, np.newaxis]
        residuals.append(residual)

        if index < skip_samples:
            continue
        if not estimation_started:
            starting_index = index
            estimation_started = True

        average_factor = (1 - map_b) / (1 -
                                        map_b**(index - starting_index + 1))
        r_mean = (1-average_factor) * r_mean + average_factor * residual
        residual -= r_mean
        estimate = estimate_noise_ukf_map(
            residual, tracker.Pz, average_factor,
            map_estimations[-1])
        map_estimations.append(estimate)

    readings = np.asarray(readings)
    filtered = np.asarray(filtered)
    residuals = np.asarray(residuals)
    Ps = np.asarray(Ps)
    return readings, filtered, residuals, Ps, map_estimations[-1]
Esempio n. 5
0
def perform_estimation(residual, tracker, index, old_estimate):
    average_factor = (1 - 0.95) / (1 - 0.95**(index + 1))
    estimate = estimate_noise_ukf_map(residual, tracker.Pz, average_factor,
                                      old_estimate, False)
    return estimate