Esempio n. 1
0
def run_tracker():
    # parameters
    filter_misestimation_factor = 1.0
    sample_size = 100
    used_taps = int(sample_size * 0.5)
    measurement_std = 3.5

    # set up sensor simulator
    dt = 0.1
    measurement_std_list = np.asarray([measurement_std] * sample_size)
    sim = SensorSim(0, 0.1, measurement_std_list, 1, timestep=dt)

    # set up kalman filter
    tracker = KalmanFilter(dim_x=2, dim_z=1)
    tracker.F = np.array([[1, dt], [0, 1]])
    q = Q_discrete_white_noise(dim=2, dt=dt, var=0.01)
    tracker.Q = q
    tracker.H = np.array([[1, 0]])
    tracker.R = measurement_std**2 * filter_misestimation_factor
    tracker.x = np.array([[0, 0]]).T
    tracker.P = np.eye(2) * 500

    # perform sensor simulation and filtering
    readings = []
    truths = []
    mu = []
    residuals = []
    for _ in measurement_std_list:
        reading, truth = sim.read()
        readings.extend(reading.flatten())
        truths.extend(truth.flatten())
        tracker.predict()
        tracker.update(reading)
        mu.extend(tracker.x[0])
        residual_posterior = reading - np.dot(tracker.H, tracker.x)
        residuals.extend(residual_posterior[0])

    # error = np.asarray(truths) - mu
    # plot_results(readings, mu, error, residuals)

    # perform estimation
    cor = Correlator(residuals)
    correlation = cor.autocorrelation(used_taps)
    R_approx = estimate_noise_approx(correlation[0], tracker.H, tracker.P,
                                     'posterior')
    abs_err = measurement_std**2 - R_approx
    rel_err = abs_err / measurement_std**2
    print("True: %.3f" % measurement_std**2)
    print("Filter: %.3f" % tracker.R)
    print("Estimated (approximation): %.3f" % R_approx)
    print("Absolute error: %.3f" % abs_err)
    print("Relative error: %.3f %%" % (rel_err * 100))
    print("-" * 15)
    return rel_err
Esempio n. 2
0
class TestSensorSim:

    def setup(self):
        self.measurement_std = [1, 2, 3]
        self.sim1d = SensorSim(0, 0.5, self.measurement_std, 1)
        self.sim2d = SensorSim((0, 0), (1, 2), self.measurement_std, 2)

    def test_basic_constructor(self):
        pass

    def test_constructor_measurement_check(self):
        with pytest.raises(ValueError):
            SensorSim(0, 1, 4, 1)

    def test_constructor_position_check(self):
        with pytest.raises(ValueError):
            SensorSim(0, (1, 1), [4], 2)

    def test_constructor_velocity_check(self):
        with pytest.raises(ValueError):
            SensorSim((0, 0), 1, [4], 2)

    def test_read_all_1d(self):
        for x in self.measurement_std:
            meas, truth = self.sim1d.read()
            assert meas.shape == (1, 1)
            assert truth.shape == (1, 1)

    def test_read_all_2d(self):
        for x in self.measurement_std:
            meas, truth = self.sim2d.read()
            assert meas.shape == (2, 1)
            assert truth.shape == (2, 1)

    def test_read_too_many(self):
        for x in self.measurement_std:
            self.sim2d.read()
        with pytest.raises(IndexError):
            self.sim2d.read()

    def test_batch_read_2d(self):
        res = self.sim2d.batch_read()
        assert len(res) == len(self.measurement_std)
        shape = np.asarray(res).shape
        assert shape[0] == len(self.measurement_std)
        assert shape[1] == 2
        assert shape[2] == 2
        assert shape[3] == 1
Esempio n. 3
0
"""
Evaluate the SensorSim class by plotting the result of an increasing
and later decreasing measurement noise variance
"""
import numpy as np
from matplotlib import pyplot as plt
from noiseestimation.sensorsim import SensorSim

measurement_std = np.arange(0, 4, .02)
measurement_std = np.concatenate(
    (measurement_std, list(reversed(measurement_std))))
sim = SensorSim(
    position=(
        0, 0), velocity=(
            0.5, 1), measurement_std=measurement_std, dim=2)

readings = np.array([np.array(sim.read()) for _ in measurement_std])

plt.plot(readings[:, 0, 0], readings[:, 0, 1], 'go', label="sensor readings")
plt.plot(readings[:, 1, 0], readings[:, 1, 1],
         'm', linewidth=2, label="true values")
plt.legend(loc='lower right')
plt.title("Position sensor readings")
plt.show()
def run_tracker():
    # parameters
    measurement_std = 3.5
    filter_misestimation_factor = 1.0
    sample_size = 2000
    estimation_sample_size = 80
    used_taps = int(estimation_sample_size * 0.5)

    # set up sensor simulator
    dt = 0.1
    # measurement_std_list = np.asarray([measurement_std] * sample_size)
    measurement_std_list = np.linspace(measurement_std / 5,
                                       measurement_std * 1, sample_size / 2)
    measurement_std_list = np.concatenate(
        (measurement_std_list, list(reversed(measurement_std_list))))
    sim = SensorSim(0, 0.1, measurement_std_list, 1, timestep=dt)

    # set up kalman filter
    tracker = KalmanFilter(dim_x=2, dim_z=1)
    tracker.F = np.array([[1, dt], [0, 1]])
    q = Q_discrete_white_noise(dim=2, dt=dt, var=0.01)
    tracker.Q = q
    tracker.H = np.array([[1, 0]])
    tracker.R = measurement_std**2 * filter_misestimation_factor
    tracker.x = np.array([[0, 0]]).T
    tracker.P = np.eye(2) * 500

    # perform sensor simulation and filtering
    readings = []
    truths = []
    mu = []
    residuals = []
    Rs = []
    for idx, _ in enumerate(measurement_std_list):
        reading, truth = sim.read()
        readings.extend(reading.flatten())
        truths.extend(truth.flatten())
        tracker.predict()
        tracker.update(reading)
        mu.extend(tracker.x[0])
        residuals.extend(tracker.y[0])
        Rs.append(tracker.R)

        if (idx < estimation_sample_size
                or idx % (estimation_sample_size / 10) != 0):
            print(idx)
            continue
        cor = Correlator(residuals[-estimation_sample_size:])
        used_taps = int(estimation_sample_size / 2)
        correlation = cor.autocorrelation(used_taps)
        R = estimate_noise(correlation, tracker.K, tracker.F, tracker.H)
        R_approx = estimate_noise_approx(correlation[0], tracker.H, tracker.P)
        abs_err = measurement_std**2 - R
        rel_err = abs_err / measurement_std**2
        print("True: %.3f" % measurement_std**2)
        print("Filter: %.3f" % tracker.R)
        print("Estimated: %.3f" % R)
        print("Estimated (approximation): %.3f" % R_approx)
        print("Absolute error: %.3f" % abs_err)
        print("Relative error: %.3f %%" % (rel_err * 100))
        print("-" * 15)
        if (R > 0):
            tracker.R = R
        # if(R_approx > 0):
        #     tracker.R = R_approx

    # error = np.asarray(truths) - mu

    plot_results(readings, mu, Rs, measurement_std_list)