Esempio n. 1
0
File: tib.py Progetto: zwocram/TFS
def get_prices(ticker, start_date):

    prices_df = norgatedata.price_timeseries(ticker,
                                             start_date=start_date,
                                             format=NORGATE_TIMESERIESFORMAT)
    prices_df['TICKER'] = ticker
    prices_df.index.rename('DATE', inplace=True)
    prices_df = drop_columns_from_norgate_dataset(prices_df)

    return prices_df.groupby(['TICKER', 'DATE']).min()
Esempio n. 2
0
def load_ng_historical(symbol,startdate=str_to_dt('1970-01-01'),enddate=None,interval="D"):
	pricedata = ng.price_timeseries(
		symbol,
		stock_price_adjustment_setting = ng.StockPriceAdjustmentType.TOTALRETURN,
		padding_setting=ng.PaddingType.ALLWEEKDAYS,
		start_date = startdate,
		end_date = enddate,
		interval=interval,
		format='pandas-dataframe'
	)
	return pricedata
def hist_sym(sym, start):
    #sym: symbol or ticker
    #start: start date 'yyyy-mm-dd' format
    priceadjust = norgatedata.StockPriceAdjustmentType.TOTALRETURN
    padding_setting = norgatedata.PaddingType.NONE
    timeseriesformat = 'pandas-dataframe'
    start_date = pd.Timestamp(start)

    try:
        dff = norgatedata.price_timeseries(
            sym,
            stock_price_adjustment_setting=priceadjust,
            padding_setting=padding_setting,
            start_date=start_date,
            format=timeseriesformat)
        return (dff)

    except:
        return ('no symbol')
Esempio n. 4
0
def norgate_defined_start(watchlist, start_date, end_date, frequency):
    symbols = norgatedata.watchlist_symbols(watchlist)

    df_list = []

    for symbol in symbols:
        norgate_df = norgatedata.price_timeseries(symbol,
                                                  start_date=start_date,
                                                  end_date=end_date,
                                                  interval=frequency,
                                                  format='pandas-dataframe')

        # creating a symbol column so that we can identify
        # what ticker information we're looking at
        norgate_df['Symbol'] = symbol

        # appending the dataframes to an empty list to concatenate them after the for loop
        df_list.append(norgate_df)

    return df_list
Esempio n. 5
0
def create_index(start, end, index_ticker):
    symbol = index_ticker

    norgate_df = norgatedata.price_timeseries(symbol,
                                              start_date=start,
                                              end_date=end,
                                              interval='D',
                                              format='pandas-dataframe')

    norgate_df.drop([
        'Open', 'High', 'Low', 'Volume', 'Turnover', 'Unadjusted Close',
        'Dividend'
    ],
                    axis=1,
                    inplace=True)

    # changing name from Close to whatever the ticker is
    norgate_df.rename({'Close': index_ticker}, inplace=True, axis=1)

    # return the cumulative pct return over the period we have the data for
    norgate_df[index_ticker] = np.cumprod(
        1 + norgate_df[index_ticker].pct_change())

    return norgate_df
from datetime import datetime

lookback_period = 60
end_date = datetime.now()


watchlistname = 'spy_tlt_gld'
symbols = norgatedata.watchlist_symbols(watchlistname)

df_list = []

for symbol in symbols:

    norgate_df = norgatedata.price_timeseries(
        symbol,
        end_date=end_date,
        limit=lookback_period,
        interval='D',
        format='pandas-dataframe')

    # creating a symbol column so that we can identify
    # what ticker information we're looking at
    norgate_df['Symbol'] = symbol

    # appending the dataframes to an empty list to concatenate them after the for loop
    df_list.append(norgate_df)


# joins the dataframes together for all tickers
appended_data = pd.concat(df_list)

# just keep the closing data and the symbol