def draw_window_centroids(img, window_centroids):
    # If we found any window centers
    if len(window_centroids) > 0:

        # Points used to draw all the left and right windows
        l_points = np.zeros_like(img)
        r_points = np.zeros_like(img)

        # Go through each level and draw the windows
        for level in range(0, len(window_centroids)):
            # Window_mask is a function to draw window areas
            l_mask = window_mask(window_width, window_height, img,
                                 window_centroids[level][0], level)
            r_mask = window_mask(window_width, window_height, img,
                                 window_centroids[level][1], level)
            # Add graphic points from window mask here to total pixels found
            l_points[(l_points == 255) | ((l_mask == 1))] = 255
            r_points[(r_points == 255) | ((r_mask == 1))] = 255

        # Draw the results
        template = np.array(
            r_points + l_points,
            np.uint8)  # add both left and right window pixels together
        zero_channel = np.zeros_like(template)  # create a zero color channel
        template = np.array(cv2.merge((zero_channel, template, zero_channel)),
                            np.uint8)  # make window pixels green
        warpage = np.array(
            to_RGB(img),
            np.uint8)  # making the original road pixels 3 color channels
        output = cv2.addWeighted(
            warpage, 1.0, template, 0.5,
            0.0)  # overlay the orignal road image with window results

    # If no window centers found, just display original road image
    else:
        output = np.array(cv2.merge((img, img, img)), np.uint8)
    return output
    elif first_round:
        test_image = cv2.imread('test_images/straight_lines1.jpg')
        gray = cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)
        undistort = rmv_distortion.undistort(test_image)
        #works for straight road
        #sample_bound_box = np.array([317, 640, 990, 646, 490, 522, 801, 524])
        # curved road
        sample_bound_box = np.array([390, 600, 940, 590, 560, 480, 745, 470],
                                    np.float32)

        shape = (1280, 720)
        phi = horizontal_shift(sample_bound_box[:4], sample_bound_box[4:8])
        transformed_lower, transformed_upper = center_shift_points(
            sample_bound_box[:4], sample_bound_box[4:8], shape, phi)
        transformed = transform_perspective(
            to_RGB(bit_and_transform(undistort)),
            np.float32(sample_bound_box.reshape((4, 2))),
            np.float32(
                np.stack([transformed_lower, transformed_upper]).reshape(
                    (4, 2))), shape)
        plt.imshow(transformed, cmap='gray')
        plt.show()
    elif second_round:
        test_image = mpimg.imread('test_images/test2.jpg')
        gray = cv2.cvtColor(test_image, cv2.COLOR_RGB2GRAY)
        undistort = rmv_distortion.undistort(test_image)
        transformed = transform_perspective2(undistort)

        f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9))
        f.tight_layout()
        ax1.imshow(undistort, cmap='gray')
Esempio n. 3
0
def pipeline(img):
    global left_line
    global right_line
    global counter
    rmv_distortion = RemoveDistortion()
    rmv_distortion.load_pickle()
    undistort = rmv_distortion.undistort(img)
    # transform into bird-eye perspective
    src = np.array([390, 600, 940, 590, 560, 480, 745, 470],
                   np.float32).reshape((4, 2))
    dst = np.array([455, 650, 870, 670, 460, 350, 905, 360],
                   np.float32).reshape((4, 2))

    M = cv2.getPerspectiveTransform(src, dst)
    Minv = cv2.getPerspectiveTransform(dst, src)
    boolean = np.logical_or(bit_and_transform(undistort),
                            hls_decision_rule(undistort))
    warped = cv2.warpPerspective(to_RGB(boolean),
                                 M, (img.shape[1], img.shape[0]),
                                 flags=cv2.INTER_LINEAR)[:, :, 0]

    # remove irrelevant regions
    warped[-200:, :370] = False  # lower left
    warped[:550, :300] = False  # top left
    warped[-300:, -300:] = False  # lower right
    warped[:450, -300:] = False  # top right
    warped[-20:, :] = False  # remove bottom 20 pixels

    # find centroids and transform back
    if (left_line.current_fit is None
            and right_line.current_fit is None) or counter > 5:
        centroids = find_window_centroids(warped, window_width, window_height,
                                          margin)
        counter = 0
    else:
        try:
            centroids = Line.local_search(warped, left_line.centroid,
                                          right_line.centroid,
                                          left_line.extrap.predict_xfitted(),
                                          right_line.extrap.predict_xfitted())
            counter += 1
        except ValueError:
            print('exception used')
            centroids = find_window_centroids(warped, window_width,
                                              window_height, margin)
            counter = 0

    # add in new values
    left_centroid = centroids[:, 0]
    right_centroid = centroids[:, 1]

    # update dependent values
    offset = distance_from_center_lane(centroids, img, Minv)  # initial attempt
    left_line.next_fit(left_centroid, right_centroid, offset)
    right_line.next_fit(right_centroid, left_centroid, offset)
    # Fit a second order polynomial to each

    bounded = bound_lanes(np.uint8(warped), left_line.get_best_fit(),
                          right_line.get_best_fit())

    bounds_img = cv2.warpPerspective(bounded,
                                     Minv, (img.shape[1], img.shape[0]),
                                     flags=cv2.INTER_LINEAR)
    bounded_lanes = cv2.addWeighted(np.uint8(img), 1, to_RGB(bounds_img), 0.8,
                                    0)

    # find radius curvature and offset
    left_curverad, right_curverad = radius_curvature(img, centroids)
    left_line.set_curverad(left_curverad)
    right_line.set_curverad(right_curverad)
    offset = distance_from_center_lane(centroids, img, Minv)

    #drawing the convolutional process for diagnostic purposes
    convolutional_process = draw_window_centroids(np.float32(warped),
                                                  centroids)

    return bounded_lanes, warped, convolutional_process, (
        left_curverad, right_curverad), offset
Esempio n. 4
0
def insert_diag_into(frame, diag, x_slice, y_slice):
    # should take in upper left and lower right pixel location
    x_shape = x_slice.stop - x_slice.start
    y_shape = y_slice.stop - y_slice.start
    frame[x_slice, y_slice] = cv2.resize(to_RGB(diag), (y_shape, x_shape),
                                         interpolation=cv2.INTER_AREA)
Esempio n. 5
0
                bounding_box[0][1]:bounding_box[1][1],
                bounding_box[0][0]:bounding_box[1][0]]
            print("mean BGR is: ")
            print(np.mean(pixels_of_interest.reshape((-1, 3)), axis=0))

            print("mean HLS is: ")
            print(np.mean(hls_pixels_of_interest.reshape((-1, 3)), axis=0))
            print(np.std(hls_pixels_of_interest.reshape((-1, 3)), axis=0))

    elif test_lane_colors:

        cv2.namedWindow('original')
        cv2.imshow('original', img)

        cv2.namedWindow('image Hue')
        cv2.imshow('image Hue', to_RGB(threshold_hue(img, (70, 180))))

        cv2.namedWindow('img saturation')
        cv2.imshow('img saturation',
                   to_RGB(threshold_saturation(
                       img, (80, 255))))  #saturation great for yellow
        # great for white lines too...

        cv2.namedWindow('combined rule')
        cv2.imshow('combined rule', to_RGB(hls_decision_rule(img)))

        cv2.namedWindow('combined and sobel')
        cv2.imshow('combined and sobel',
                   to_RGB((img[:, :, 2] > 230) & (img[:, :, 1] > 200)))

        cv2.namedWindow('sobel_mag')
        first procedure I tested-- to be deprecated
        """
        test = cv2.imread('test_images/straight_lines2.jpg')

        rmv_distortion = RemoveDistortion()
        rmv_distortion.load_pickle()
        undistort = rmv_distortion.undistort(test)

        binary_img = or_decision_rule(
            undistort
        )  # a more robust version using hlv color space will be added

        cv2.namedWindow('original img')
        cv2.imshow('original img', undistort)
        cv2.namedWindow('binary img')
        cv2.imshow('binary img', to_RGB(binary_img))
        cv2.namedWindow('binary img transform')
        cv2.imshow('binary img transform',
                   default_transform_perspective(to_RGB(binary_img)))

        shifted_perspective = default_transform_perspective(to_RGB(binary_img))

        #plt.imshow(shifted_perspective)
        #plt.show()

        centroids = find_window_centroids(
            shifted_perspective, window_width, window_height,
            margin)  # find centroids using default
        #print(centroids)
        # draw_window_centroids(shifted_perspective[:,:,0], centroids)
        corrected_centroids = np.array([[358., 972.], [359.,