Esempio n. 1
0
def test_lif_jit_back(jit_fixture):
    x = torch.ones(2)
    s = LIFState(z=torch.zeros(1), v=torch.zeros(1), i=torch.zeros(1))
    s.v.requires_grad = True
    input_weights = torch.ones(2)
    recurrent_weights = torch.ones(1)
    _, s = lif_step(x, s, input_weights, recurrent_weights)
    z, s = lif_step(x, s, input_weights, recurrent_weights)
    z.sum().backward()
Esempio n. 2
0
def test_lif_heavi():
    x = torch.ones(2, 1)
    s = LIFState(z=torch.ones(2, 1), v=torch.zeros(2, 1), i=torch.zeros(2, 1))
    input_weights = torch.ones(1, 1) * 10
    recurrent_weights = torch.ones(1, 1)
    p = LIFParameters(method="heaviside")
    _, s = lif_step(x, s, input_weights, recurrent_weights, p)
    z, s = lif_step(x, s, input_weights, recurrent_weights, p)
    assert z.max() > 0
    assert z.shape == (2, 1)
Esempio n. 3
0
def lif_mc_step(
    input_tensor: torch.Tensor,
    state: LIFState,
    input_weights: torch.Tensor,
    recurrent_weights: torch.Tensor,
    g_coupling: torch.Tensor,
    p: LIFParameters = LIFParameters(),
    dt: float = 0.001,
) -> Tuple[torch.Tensor, LIFState]:
    """Computes a single euler-integration step of a LIF multi-compartment
    neuron-model.

    Parameters:
        input_tensor (torch.Tensor): the input spikes at the current time step
        s (LIFState): current state of the neuron
        input_weights (torch.Tensor): synaptic weights for incoming spikes
        recurrent_weights (torch.Tensor): synaptic weights for recurrent spikes
        g_coupling (torch.Tensor): conductances between the neuron compartments
        p (LIFParameters): neuron parameters
        dt (float): Integration timestep to use
    """
    v_new = state.v + dt * torch.nn.functional.linear(state.v, g_coupling)
    return lif_step(
        input_tensor,
        LIFState(state.z, v_new, state.i),
        input_weights,
        recurrent_weights,
        p,
        dt,
    )
Esempio n. 4
0
def test_lif_cpp_and_jit_step():
    assert norse.utils.IS_OPS_LOADED
    x = torch.ones(20)
    s = LIFState(z=torch.zeros(10), v=torch.zeros(10), i=torch.zeros(10))
    input_weights = torch.linspace(0, 0.5, 200).view(10, 20)
    recurrent_weights = torch.linspace(0, -2, 100).view(10, 10)

    results = [
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 1, 1, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 1, 1, 1, 1, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 1, 1, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 1, 0, 1, 1, 0, 1, 1]),
        torch.as_tensor([0, 1, 1, 0, 1, 0, 0, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 0, 1, 1, 0, 0, 1]),
    ]

    cpp_results = []
    cpp_states = []
    for result in results:
        z, s = lif_step(x, s, input_weights, recurrent_weights)
        cpp_results.append(z)
        cpp_states.append(s)

    s = LIFState(z=torch.zeros(10), v=torch.zeros(10), i=torch.zeros(10))
    norse.utils.IS_OPS_LOADED = False  # Disable cpp

    for i, result in enumerate(results):
        z, s = lif_step(x, s, input_weights, recurrent_weights)
        assert torch.equal(z, result.float())
        assert torch.equal(z, cpp_results[i])
        assert torch.equal(s.v, cpp_states[i].v)
        assert torch.equal(s.z, cpp_states[i].z)
        assert torch.equal(s.i, cpp_states[i].i)
Esempio n. 5
0
def lif_correlation_step(
    input_tensor: torch.Tensor,
    state: LIFCorrelationState,
    input_weights: torch.Tensor,
    recurrent_weights: torch.Tensor,
    p: LIFCorrelationParameters = LIFCorrelationParameters(),
    dt: float = 0.001,
) -> Tuple[torch.Tensor, LIFCorrelationState]:
    z_new, s_new = lif_step(
        input_tensor,
        state.lif_state,
        input_weights,
        recurrent_weights,
        p.lif_parameters,
        dt,
    )

    input_correlation_state_new = correlation_sensor_step(
        z_pre=input_tensor,
        z_post=z_new,
        state=state.input_correlation_state,
        p=p.input_correlation_parameters,
        dt=dt,
    )

    recurrent_correlation_state_new = correlation_sensor_step(
        z_pre=state.lif_state.z,
        z_post=z_new,
        state=state.recurrent_correlation_state,
        p=p.recurrent_correlation_parameters,
        dt=dt,
    )
    return (
        z_new,
        LIFCorrelationState(
            lif_state=s_new,
            input_correlation_state=input_correlation_state_new,
            recurrent_correlation_state=recurrent_correlation_state_new,
        ),
    )
Esempio n. 6
0
def test_lif_step():
    x = torch.ones(20)
    s = LIFState(z=torch.zeros(10), v=torch.zeros(10), i=torch.zeros(10))
    input_weights = torch.linspace(0, 0.5, 200).view(10, 20)
    recurrent_weights = torch.linspace(0, -2, 100).view(10, 10)

    results = [
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 1, 1, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 1, 1, 1, 1, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 1, 1, 0, 0, 0, 0]),
        torch.as_tensor([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 1, 0, 1, 1, 0, 1, 1]),
        torch.as_tensor([0, 1, 1, 0, 1, 0, 0, 1, 1, 1]),
        torch.as_tensor([0, 0, 0, 0, 0, 1, 1, 0, 0, 1]),
    ]

    for result in results:
        z, s = lif_step(x, s, input_weights, recurrent_weights)
        assert torch.equal(z, result.float())
Esempio n. 7
0
def lif_refrac_step(
    input_tensor: torch.Tensor,
    state: LIFRefracState,
    input_weights: torch.Tensor,
    recurrent_weights: torch.Tensor,
    p: LIFRefracParameters = LIFRefracParameters(),
    dt: float = 0.001,
) -> Tuple[torch.Tensor, LIFRefracState]:
    r"""Computes a single euler-integration step of a recurrently connected
     LIF neuron-model with a refractory period.

    Parameters:
        input_tensor (torch.Tensor): the input spikes at the current time step
        s (LIFRefracState): state at the current time step
        input_weights (torch.Tensor): synaptic weights for incoming spikes
        recurrent_weights (torch.Tensor): synaptic weights for recurrent spikes
        p (LIFRefracParameters): parameters of the lif neuron
        dt (float): Integration timestep to use
    """
    z_new, s_new = lif_step(input_tensor, state.lif, input_weights,
                            recurrent_weights, p.lif, dt)
    v_new, z_new, rho_new = compute_refractory_update(state, z_new, s_new.v, p)

    return z_new, LIFRefracState(LIFState(z_new, v_new, s_new.i), rho_new)