Esempio n. 1
0
def _prep_plot_data(grid_T_hr, timezone, tidal_predictions):
    results_t_start, results_t_end = nc_tools.timestamp(grid_T_hr, (0, -1))
    ttide = shared.get_tides("Point Atkinson", tidal_predictions)
    ttide.time = ttide.time.dt.tz_convert(pytz.timezone(timezone))
    plot_data = namedtuple("PlotData", "results_t_start, results_t_end, ttide")
    return plot_data(results_t_start.to(timezone), results_t_end.to(timezone),
                     ttide)
Esempio n. 2
0
def _prep_plot_data(grids_15m, tidal_predictions, weather_path):
    max_ssh, max_ssh_time, risk_levels = {}, {}, {}
    u_wind_4h_avg, v_wind_4h_avg, max_wind_avg = {}, {}, {}
    for name in places.TIDE_GAUGE_SITES:
        ssh_ts = nc_tools.ssh_timeseries_at_point(grids_15m[name], 0, 0, datetimes=True)
        ttide = shared.get_tides(name, tidal_predictions)
        max_ssh[name], max_ssh_time[name] = shared.find_ssh_max(name, ssh_ts, ttide)
        risk_levels[name] = stormtools.storm_surge_risk_level(
            name, max_ssh[name], ttide
        )
        wind_avg = wind_tools.calc_wind_avg_at_point(
            arrow.get(max_ssh_time[name]),
            weather_path,
            places.PLACES[name]["wind grid ji"],
            avg_hrs=-4,
        )
        u_wind_4h_avg[name], v_wind_4h_avg[name] = wind_avg
        max_wind_avg[name], _ = wind_tools.wind_speed_dir(
            u_wind_4h_avg[name], v_wind_4h_avg[name]
        )
    plot_data = namedtuple(
        "PlotData",
        "ssh_ts, max_ssh, max_ssh_time, risk_levels, "
        "u_wind_4h_avg, v_wind_4h_avg, max_wind_avg",
    )
    return plot_data(
        ssh_ts,
        max_ssh,
        max_ssh_time,
        risk_levels,
        u_wind_4h_avg,
        v_wind_4h_avg,
        max_wind_avg,
    )
Esempio n. 3
0
def plot_wlev_residual_NOAA(t_orig, elements, figsize=(20, 6)):
    """Plots the water level residual as calculated by the function
    calculate_wlev_residual_NOAA and has the option to also plot the
    observed water levels and predicted tides over the course of one day.

    :arg t_orig: The beginning of the date range of interest.
    :type t_orig: datetime object

    :arg elements: Elements included in figure.
                   'residual' for residual only and 'all' for residual,
                   observed water level, and predicted tides.
    :type elements: string

    :arg figsize: Figure size (width, height) in inches.
    :type figsize: 2-tuple

    :returns: fig
    """
    tides = shared.get_tides("Neah Bay", path=paths["tides"])
    residual, obs = obs_residual_ssh_NOAA("Neah Bay", tides, t_orig, t_orig)

    # Figure
    fig, ax = plt.subplots(1, 1, figsize=figsize)

    # Plot
    ax.plot(
        obs.time,
        residual,
        colours["residual"],
        label="Observed Residual",
        linewidth=2.5,
    )
    if elements == "all":
        ax.plot(
            obs.time,
            obs.wlev,
            colours["observed"],
            label="Observed Water Level",
            lw=2.5,
        )
        ax.plot(
            tides.time,
            tides.pred[tides.time == obs.time],
            colours["predicted"],
            label="Tidal Predictions",
            linewidth=2.5,
        )
    if elements == "residual":
        pass
    ax.set_title("Residual of the observed water levels at"
                 " Neah Bay: {t:%d-%b-%Y}".format(t=t_orig))
    ax.set_ylim([-3.0, 3.0])
    ax.set_xlabel("[hrs]")
    hfmt = mdates.DateFormatter("%m/%d %H:%M")
    ax.xaxis.set_major_formatter(hfmt)
    ax.legend(loc=2, ncol=3)
    ax.grid()

    return fig
def _prep_plot_data(
    place,
    grid_T_hr,
    grids_15m,
    bathy,
    timezone,
    weather_path,
    tidal_predictions,
):
    ssh_hr = grid_T_hr.variables['sossheig']
    time_ssh_hr = nc_tools.timestamp(
        grid_T_hr, range(grid_T_hr.variables['time_counter'].size))
    try:
        j, i = places.PLACES[place]['NEMO grid ji']
    except KeyError as e:
        raise KeyError(f'place name or info key not found in '
                       f'salishsea_tools.places.PLACES: {e}')
    itime_max_ssh = np.argmax(ssh_hr[:, j, i])
    time_max_ssh_hr = time_ssh_hr[itime_max_ssh]
    ssh_15m_ts = nc_tools.ssh_timeseries_at_point(grids_15m[place],
                                                  0,
                                                  0,
                                                  datetimes=True)
    ttide = shared.get_tides(place, tidal_predictions)
    ssh_corr = shared.correct_model_ssh(ssh_15m_ts.ssh, ssh_15m_ts.time, ttide)
    max_ssh_15m, time_max_ssh_15m = shared.find_ssh_max(
        place, ssh_15m_ts, ttide)
    tides_15m = shared.interp_to_model_time(ssh_15m_ts.time, ttide.pred_all,
                                            ttide.time)
    residual = ssh_corr - tides_15m
    max_ssh_residual = residual[ssh_15m_ts.time == time_max_ssh_15m][0]
    wind_4h_avg = wind_tools.calc_wind_avg_at_point(
        arrow.get(time_max_ssh_15m),
        weather_path,
        places.PLACES[place]['wind grid ji'],
        avg_hrs=-4)
    wind_4h_avg = wind_tools.wind_speed_dir(*wind_4h_avg)
    plot_data = namedtuple(
        'PlotData', 'ssh_max_field, time_max_ssh_hr, ssh_15m_ts, ssh_corr, '
        'max_ssh_15m, time_max_ssh_15m, residual, max_ssh_residual, '
        'wind_4h_avg, '
        'ttide, bathy')
    return plot_data(
        ssh_max_field=ssh_hr[itime_max_ssh],
        time_max_ssh_hr=time_max_ssh_hr.to(timezone),
        ssh_15m_ts=ssh_15m_ts,
        ssh_corr=ssh_corr,
        max_ssh_15m=max_ssh_15m - places.PLACES[place]['mean sea lvl'],
        time_max_ssh_15m=arrow.get(time_max_ssh_15m).to(timezone),
        residual=residual,
        max_ssh_residual=max_ssh_residual,
        wind_4h_avg=wind_4h_avg,
        ttide=ttide,
        bathy=bathy,
    )
Esempio n. 5
0
def plot_residual_forcing(ax, runs_list, t_orig):
    """Plots the observed water level residual at Neah Bay against
    forced residuals from existing ssh*.txt files for Neah Bay.
    Function may produce none, any, or all (nowcast, forecast, forecast 2)
    forced residuals depending on availability for specified date (runs_list).

    :arg ax: The axis where the residuals are plotted.
    :type ax: axis object

    :arg runs_list: Runs that are verified as complete.
    :type runs_list: list

    :arg t_orig: Date being considered.
    :type t_orig: datetime object

    """

    # truncation times
    sdt = t_orig.replace(tzinfo=tz.tzutc())
    edt = sdt + datetime.timedelta(days=1)

    # retrieve observations, tides and residual
    tides = shared.get_tides("Neah Bay", path=paths["tides"])
    res_obs, obs = obs_residual_ssh_NOAA("Neah Bay", tides, sdt, sdt)
    # truncate and plot
    res_obs_trun, time_trun = analyze.truncate_data(np.array(res_obs),
                                                    np.array(obs.time), sdt,
                                                    edt)
    ax.plot(time_trun,
            res_obs_trun,
            colours["observed"],
            label="observed",
            lw=2.5)

    # plot forcing for each simulation
    for mode in runs_list:
        filename_NB, run_date = analyze.create_path(mode, t_orig, "ssh*.txt")
        if filename_NB:
            dates, surge, fflag = NeahBay_forcing_anom(filename_NB, run_date,
                                                       paths["tides"])
            surge_t, dates_t = analyze.truncate_data(np.array(surge),
                                                     np.array(dates), sdt, edt)
            ax.plot(dates_t, surge_t, label=mode, lw=2.5, color=colours[mode])
    ax.set_title("Comparison of observed and forced sea surface"
                 " height residuals at Neah Bay:"
                 "{t_forcing:%d-%b-%Y}".format(t_forcing=t_orig))
Esempio n. 6
0
def get_error_forcing(runs_list, t_orig):
    """Sets up the calculation for the forcing residual error.

    :arg runs_list: Runs that have been verified as complete.
    :type runs_list: list

    :arg t_orig: Date being considered.
    :type t_orig: datetime object

    :returns: error_frc_dict, t_frc_dict
    """

    # truncation times
    sdt = t_orig.replace(tzinfo=tz.tzutc())
    edt = sdt + datetime.timedelta(days=1)

    # retrieve observed residual
    tides = shared.get_tides("Neah Bay", path=paths["tides"])
    res_obs, obs = obs_residual_ssh_NOAA("Neah Bay", tides, sdt, sdt)
    res_obs_trun, time_trun = analyze.truncate_data(np.array(res_obs),
                                                    np.array(obs.time), sdt,
                                                    edt)

    # calculate forcing error
    error_frc_dict = {}
    t_frc_dict = {}
    for mode in runs_list:
        filename_NB, run_date = analyze.create_path(mode, t_orig, "ssh*.txt")
        if filename_NB:
            dates, surge, fflag = NeahBay_forcing_anom(filename_NB, run_date,
                                                       paths["tides"])
            surge_t, dates_t = analyze.truncate_data(np.array(surge),
                                                     np.array(dates), sdt, edt)
            error_frc = analyze.calculate_error(surge_t, dates_t, res_obs_trun,
                                                obs.time)
            error_frc_dict[mode] = error_frc
            t_frc_dict[mode] = dates_t

    return error_frc_dict, t_frc_dict
Esempio n. 7
0
def compare_errors(name, mode, start, end, grid_B, figsize=(20, 12)):
    """compares the model and forcing error at a station
    between dates start and end for a simulation mode."""

    # array of dates for iteration
    numdays = (end - start).days
    dates = [
        start + datetime.timedelta(days=num) for num in range(0, numdays + 1)
    ]
    dates.sort()

    # intiialize figure and arrays
    fig, axs = plt.subplots(3, 1, figsize=figsize)

    force, model, time, daily_time = combine_errors(name, mode, dates, grid_B)
    ttide = shared.get_tides(name, path=paths["tides"])

    # Plotting time series
    ax = axs[0]
    ax.plot(time, force["error"], "b", label="Forcing error", lw=2)
    ax.plot(time, model["error"], "g", lw=2, label="Model error")
    ax.set_title("Comparison of {mode} error at"
                 " {name}".format(mode=mode, name=name))
    ax.set_ylim([-0.4, 0.4])
    hfmt = mdates.DateFormatter("%m/%d %H:%M")

    # Plotting daily mean
    ax = axs[1]
    ax.plot(daily_time,
            force["daily"],
            "b",
            label="Forcing daily mean error",
            lw=2)
    ax.plot(
        [time[0], time[-1]],
        [np.nanmean(force["error"]),
         np.nanmean(force["error"])],
        "--b",
        label="Mean forcing error",
        lw=2,
    )
    ax.plot(daily_time,
            model["daily"],
            "g",
            lw=2,
            label="Model daily mean error")
    ax.plot(
        [time[0], time[-1]],
        [np.nanmean(model["error"]),
         np.nanmean(model["error"])],
        "--g",
        label="Mean model error",
        lw=2,
    )
    ax.set_title("Comparison of {mode} daily mean error at"
                 " {name}".format(mode=mode, name=name))
    ax.set_ylim([-0.4, 0.4])

    # Plot tides
    ax = axs[2]
    ax.plot(ttide.time, ttide.pred_all, "k", lw=2, label="tides")
    ax.set_title("Tidal predictions")
    ax.set_ylim([-3, 3])

    # format axes
    hfmt = mdates.DateFormatter("%m/%d %H:%M")
    for ax in axs:
        ax.xaxis.set_major_formatter(hfmt)
        ax.legend(loc=2, ncol=4)
        ax.grid()
        ax.set_xlim([start, end + datetime.timedelta(days=1)])
        ax.set_ylabel("[m]")

    return fig
Esempio n. 8
0
def get_error_model(names, runs_list, grid_B, t_orig):
    """Sets up the calculation for the model residual error.

    :arg names: Names of station.
    :type names: list of strings

    :arg runs_list: Runs that have been verified as complete.
    :type runs_list: list

    :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model.
    :type grid_B: :class:`netCDF4.Dataset`

    :arg t_orig: Date being considered.
    :type t_orig: datetime object

    :returns: error_mod_dict, t_mod_dict, t_orig_dict
    """

    bathy, X, Y = tidetools.get_bathy_data(grid_B)
    t_orig_obs = t_orig + datetime.timedelta(days=-1)
    t_final_obs = t_orig + datetime.timedelta(days=1)

    # truncation times
    sdt = t_orig.replace(tzinfo=tz.tzutc())
    edt = sdt + datetime.timedelta(days=1)

    error_mod_dict = {}
    t_mod_dict = {}
    for name in names:
        error_mod_dict[name] = {}
        t_mod_dict[name] = {}
        # Look up model grid
        lat = SITES[name]["lat"]
        lon = SITES[name]["lon"]
        j, i = geo_tools.find_closest_model_point(lon,
                                                  lat,
                                                  X,
                                                  Y,
                                                  land_mask=bathy.mask)
        # Observed residuals and wlevs and tides
        ttide = shared.get_tides(name, path=paths["tides"])
        res_obs, wlev_meas = obs_residual_ssh(name, ttide, t_orig_obs,
                                              t_final_obs)
        res_obs_trun, time_obs_trun = analyze.truncate_data(
            np.array(res_obs), np.array(wlev_meas.time), sdt, edt)

        for mode in runs_list:
            filename, run_date = analyze.create_path(
                mode, t_orig, "SalishSea_1h_*_grid_T.nc")
            grid_T = nc.Dataset(filename)
            res_mod, t_model, ssh_corr, ssh_mod = model_residual_ssh(
                grid_T, j, i, ttide)
            # Truncate
            res_mod_trun, t_mod_trun = analyze.truncate_data(
                res_mod, t_model, sdt, edt)
            # Error
            error_mod = analyze.calculate_error(res_mod_trun, t_mod_trun,
                                                res_obs_trun, time_obs_trun)
            error_mod_dict[name][mode] = error_mod
            t_mod_dict[name][mode] = t_mod_trun

    return error_mod_dict, t_mod_dict
Esempio n. 9
0
def plot_residual_model(axs, names, runs_list, grid_B, t_orig):
    """Plots the observed sea surface height residual against the
    sea surface height model residual (calculate_residual) at
    specified stations. Function may produce none, any, or all
    (nowcast, forecast, forecast 2) model residuals depending on
    availability for specified date (runs_list).

    :arg ax: The axis where the residuals are plotted.
    :type ax: list of axes

    :arg names: Names of station.
    :type names: list of names

    :arg runs_list: Runs that have been verified as complete.
    :type runs_list: list

    :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model.
    :type grid_B: :class:`netCDF4.Dataset`

    :arg t_orig: Date being considered.
    :type t_orig: datetime object

    """

    bathy, X, Y = tidetools.get_bathy_data(grid_B)
    t_orig_obs = t_orig + datetime.timedelta(days=-1)
    t_final_obs = t_orig + datetime.timedelta(days=1)

    # truncation times
    sdt = t_orig.replace(tzinfo=tz.tzutc())
    edt = sdt + datetime.timedelta(days=1)

    for ax, name in zip(axs, names):
        # Identify model grid point
        lat = SITES[name]["lat"]
        lon = SITES[name]["lon"]
        j, i = geo_tools.find_closest_model_point(lon,
                                                  lat,
                                                  X,
                                                  Y,
                                                  land_mask=bathy.mask)
        # Observed residuals and wlevs and tides
        ttide = shared.get_tides(name, path=paths["tides"])
        res_obs, wlev_meas = obs_residual_ssh(name, ttide, t_orig_obs,
                                              t_final_obs)
        # truncate and plot
        res_obs_trun, time_obs_trun = analyze.truncate_data(
            np.array(res_obs), np.array(wlev_meas.time), sdt, edt)
        ax.plot(time_obs_trun,
                res_obs_trun,
                c=colours["observed"],
                lw=2.5,
                label="observed")

        for mode in runs_list:
            filename, run_date = analyze.create_path(
                mode, t_orig, "SalishSea_1h_*_grid_T.nc")
            grid_T = nc.Dataset(filename)
            res_mod, t_model, ssh_corr, ssh_mod = model_residual_ssh(
                grid_T, j, i, ttide)
            # truncate and plot
            res_mod_trun, t_mod_trun = analyze.truncate_data(
                res_mod, t_model, sdt, edt)
            ax.plot(t_mod_trun,
                    res_mod_trun,
                    label=mode,
                    c=colours[mode],
                    lw=2.5)

        ax.set_title("Comparison of modelled sea surface height residuals at"
                     " {station}: {t:%d-%b-%Y}".format(station=name, t=t_orig))
Esempio n. 10
0
def _prep_plot_data(
    place,
    ssh_fcst_dataset_url_tmpl,
    tidal_predictions,
    forecast_hrs,
    weather_path,
    bathy,
    grid_T_hr_path,
):
    # NEMO sea surface height forecast dataset
    ssh_forecast = _get_ssh_forecast(place, ssh_fcst_dataset_url_tmpl)
    # CHS water level observations dataset
    try:
        obs_1min = (data_tools.get_chs_tides(
            "obs",
            place,
            arrow.get(str(ssh_forecast.time.values[0])) -
            timedelta(seconds=5 * 60),
            arrow.get(str(ssh_forecast.time.values[-1])),
        ).to_xarray().rename({"index": "time"}))
        obs_10min_avg = obs_1min.resample(time="10min", loffset="5min").mean()
        obs = obs_10min_avg.to_dataset(name="water_level")
    except (AttributeError, KeyError):
        # No observations available
        obs = None
    shared.localize_time(ssh_forecast)
    try:
        shared.localize_time(obs)
    except (IndexError, AttributeError):
        # No observations available
        obs = None
    model_ssh_period = slice(str(ssh_forecast.time.values[0]),
                             str(ssh_forecast.time.values[-1]))
    forecast_period = slice(
        str(ssh_forecast.time.values[-forecast_hrs * 6]),
        str(ssh_forecast.time.values[-1]),
    )
    try:
        obs_period = slice(str(obs.time.values[0]), str(obs.time.values[-1]))
    except AttributeError:
        # No observations available
        obs_period = None
    # Predicted tide water levels dataset from ttide
    ttide = shared.get_tides(place, tidal_predictions)
    ttide.rename(columns={" pred_noshallow ": "pred_noshallow"}, inplace=True)
    ttide.index = pandas.to_datetime(ttide.time.values,
                                     format="%Y-%m-%d %H:%M:%S")
    ttide_ds = ttide.to_xarray().drop_vars(["time"]).rename({"index": "time"})
    # Localize ttide dataset timezone to ssh_forecast times because ttide
    # extends well beyond ends of ssh_forecast period
    shared.localize_time(ttide_ds,
                         local_datetime=arrow.get(
                             str(ssh_forecast.time.values[0])).to("local"))
    # NEMO sea surface height dataset corrected to include unmodeled tide constituents
    ssh_correction = ttide_ds.pred_noshallow.sel(
        time=model_ssh_period) - ttide_ds.pred_8.sel(time=model_ssh_period)
    ssh_corrected = ssh_forecast + ssh_correction
    # Mean sea level and extreme water levels
    msl = PLACES[place]["mean sea lvl"]
    extreme_ssh = PLACES[place]["hist max sea lvl"]
    max_tides = ttide.pred_all.max() + msl
    mid_tides = 0.5 * (extreme_ssh - max_tides) + max_tides
    thresholds = (max_tides, mid_tides, extreme_ssh)
    max_ssh = ssh_corrected.ssh.sel(time=forecast_period)
    max_ssh = max_ssh.where(max_ssh == max_ssh.max(), drop=True).squeeze()
    # Residual differences between corrected model and observations and predicted tides
    model_residual = ssh_corrected - ttide_ds.pred_all.sel(
        time=model_ssh_period)
    model_residual.attrs["tz_name"] = ssh_forecast.attrs["tz_name"]
    max_model_residual = model_residual.max()
    try:
        obs_residual = obs - ttide_ds.pred_all.sel(time=obs_period) - msl
        obs_residual.attrs["tz_name"] = obs.attrs["tz_name"]
    except KeyError:
        # No observations available
        obs_residual = None
    # Wind at NEmo model time of max sea surface height
    wind_4h_avg = wind_tools.calc_wind_avg_at_point(
        arrow.get(str(max_ssh.time.values)),
        weather_path,
        PLACES[place]["wind grid ji"],
        avg_hrs=-4,
    )
    wind_4h_avg = wind_tools.wind_speed_dir(*wind_4h_avg)
    # Model sea surface height field for contour map
    tracers_ds = xarray.open_dataset(grid_T_hr_path)
    max_ssh_time_utc = (arrow.get(str(max_ssh.time.values)).replace(
        tzinfo=ssh_forecast.attrs["tz_name"]).to("utc"))
    return SimpleNamespace(
        ssh_forecast=ssh_forecast,
        obs=obs,
        ttide=ttide_ds,
        ssh_corrected=ssh_corrected,
        msl=msl,
        thresholds=thresholds,
        max_ssh=max_ssh,
        model_residual=model_residual,
        max_model_residual=max_model_residual,
        obs_residual=obs_residual,
        wind_4h_avg=wind_4h_avg,
        bathy=bathy,
        max_ssh_field=tracers_ds.sossheig.sel(
            time_counter=max_ssh_time_utc.naive, method="nearest"),
    )