Esempio n. 1
0
def nufft(netCDFfile):
    ds = Dataset(netCDFfile, 'a')

    var_temp = ds.variables["TEMP"]
    var_cndc = ds.variables["CNDC"]

    time_var = ds.variables["TIME"]
    time = num2date(time_var[:], units=time_var.units, calendar=time_var.calendar)

    time_deploy = parser.parse(ds.time_deployment_start, ignoretz=True)
    time_recovery = parser.parse(ds.time_deployment_end, ignoretz=True)

    mask = (time <= time_deploy) | (time >= time_recovery)

    temp = var_temp[:]

    print("t0 = ", time[~mask][0])
    hours = np.array([(t - datetime(2018, 8, 22, 13, 0, 0)).total_seconds()/3600 for t in time[~mask]])

    fig, ax = plt.subplots(1, 1)

    ax.plot(hours, temp[~mask]) # , marker='.'

    ax.grid(True)

    samples = np.arange(0, len(hours))
    print("len samples ", samples.size, hours[-1])
    n_samples = samples.size

    Fnx = nufftpy.nufft1(hours, temp[~mask], M = hours[-1]*np.pi, df = np.pi*2/hours[-1], iflag=-1) * n_samples/(np.pi)  # *6.2832
    freq = nufftpy.nufftfreqs(n_samples)
    F = np.fft.fftshift(Fnx)

    #trange = np.arange(0, 6000)

    Fx = np.fft.fft(temp[~mask])
    freqx = np.fft.fftfreq(samples.size)

    window = 1 - np.hanning(len(F))  # invert the window, making a low pass filter, how to create a cur frequency

    fig2, ax2 = plt.subplots(1, 1)
    #ax2.plot(freq[1:int(len(F)/2)], np.log(abs(F[1:int(len(F)/2)])))
    ax2.plot(np.log(abs(F)))
    ax2.plot(np.log(abs(Fx)))

    print("FFT length " , len(F), hours[-1])

    F1 = np.fft.ifft(F)

    #ax[1].plot(F1)
    ax.plot(abs(F1))

    print(F1)

    plt.show()

    ds.close()
Esempio n. 2
0
def nufftpy(y, t, half_width, resolution):
    import nufftpy as nfpy
    steps = int((2 * half_width) / resolution)
    freq = nfpy.nufftfreqs(steps, df=resolution)
    freq = freq[len(freq) // 2:-1]
    harmonic_content = nfpy.nufft1(t, y, steps, df=(resolution * 2 * math.pi))
    harmonic_content = harmonic_content[len(harmonic_content) // 2:-1]

    return [
        freq, harmonic_content.real**2 + harmonic_content.imag**2,
        harmonic_content.real, harmonic_content.imag
    ]
Esempio n. 3
0
# # Pull variables from data
time = data[0].ravel()  # ravel() is used to change shape from (n, 1) to (n, )
flux = data[1].ravel()

# # Used to indicate which window, modulus and scaling should be used
dataset = 1  # 0 = sun, 1 = star2, 2 = nuindi

# # Frequency Conversion
muHz = 0.000001  # Variable for converting to microHz

# # Frequency calculation
resolution = 0.001 * muHz  # 0.01 normal
halfwidth_set = [6000, 1000, 600, 20]  # sun, star2, nuindi, betelgeuse
halfwidth = halfwidth_set[dataset] * muHz
steps = int((2 * halfwidth) / resolution)
freq = nufftpy.nufftfreqs(steps, df=resolution)
freq = freq[len(freq) // 2:-1]

# # Spectrum calculation from non-uniform fft
result = nufftpy.nufft1(time, flux, steps, df=(resolution * 2 * math.pi))
res_pos = result[len(result) // 2:-1]

spectral_power = res_pos.real**2 + res_pos.imag**2

plt.figure()
plt.plot(freq / muHz / 11.57, spectral_power)
# plt.plot(spectral_power)
plt.xlabel('Frequency [1/days]')
plt.xlim([0.04, 1.7])
plt.ylim([-10, 1.34 * 10**11])
plt.ylabel('Power (non-uniform fft)')
def nufft(t, y, n_iter, halfwidth, resolution, window=None, mph=1):
    """
    Perform CLEAN procedure using FFT (NUFFT)
    """
    # # Preparation
    import nufftpy
    # Preload lists for storing found peaks
    p_freq = []
    p_power = []
    p_alpha = []
    p_beta = []
    # Get amount of frequency steps for nufft1
    steps = int((2 * halfwidth) / resolution)
    # Make carbon copy of signal for manipulation
    y_copy = np.copy(y)

    # # Loop
    for i in range(0, n_iter):
        t1 = tm.time()

        # Get cyclic frequencies for nufft1
        freq = nufftpy.nufftfreqs(steps, df=resolution)
        freq = freq[len(freq) // 2:-1]  # Take only positive frequencies
        # Call nufft1 to perform nufft calculation
        harmonic_content = nufftpy.nufft1(t, y_copy, steps, df=(resolution * 2 * np.pi))
        harmonic_content = harmonic_content[len(harmonic_content)//2:-1]
        # Create window (if None) and apply to spectrum to only observe relevant area
        if window is None:
            window = range(0, len(harmonic_content))
        harmonic_content = harmonic_content[window]
        freq = freq[window]
        # Calculate power
        spectral_power = harmonic_content.real ** 2 + harmonic_content.imag ** 2

        # Detect peaks in power spectrum, and find power, frequency, alpha and beta values
        peaks = detect_peaks(spectral_power, mph=mph)
        peaks_power = spectral_power[peaks]
        peaks_alpha = harmonic_content.real[peaks]
        peaks_beta = harmonic_content.imag[peaks]
        peaks_freq = freq[peaks]

        # Find highest peak
        try:
            max_indx = np.argmax(peaks_power)
            max_freq = peaks_freq[max_indx]
            max_power = peaks_power[max_indx]
            max_alpha = peaks_alpha[max_indx]
            max_beta = peaks_beta[max_indx]
        except ValueError:
            break
        # plt.figure()
        # plt.plot(freq, spectral_power)
        # plt.plot(peaks_freq, peaks_power, 'r*', markersize=4)
        # plt.plot(max_freq, max_power, 'b*', markersize=6)
        # plt.show(block=False)

        # Calculate harmonic signal corresponding to highest peak in power spectrum
        max_signal = (max_alpha * np.cos(2*np.pi*max_freq * t) + max_beta * np.sin(2*np.pi*max_freq * t)) * 2

        # plt.plot(t, y_copy, linewidth=0.5)
        # plt.plot(t, max_signal, '--', linewidth=0.3)
        # plt.show()

        # Subtract calculated signal from y_copy and save the peak used
        y_copy -= max_signal
        p_power.append(max_power)
        p_alpha.append(max_alpha)
        p_beta.append(max_beta)
        p_freq.append(max_freq)

        t2 = tm.time()
        print(t2-t1)

    # # Result
    # Get cyclic frequencies for nufft1
    freq = nufftpy.nufftfreqs(steps, df=resolution)
    freq = freq[len(freq) // 2:-1]
    # Call nufft1 to perform nufft calculation for unchanged signal y
    harmonic_content = nufftpy.nufft1(t, y, steps, df=(resolution * 2 * np.pi))
    harmonic_content = harmonic_content[len(harmonic_content) // 2:-1]
    # Calculate spectral power
    spectral_power = harmonic_content.real ** 2 + harmonic_content.imag ** 2

    # Plot power spectrum and peaks found by cleaning
    plt.figure()
    plt.plot(freq, spectral_power)
    plt.plot(p_freq, p_power, 'r*', markersize=4)
    plt.show()

    # Save peaks found by cleaning in .dat file
    ps_f.writer('clean_peaks', p_freq, p_power)

    return p_freq, p_power, p_alpha, p_beta
def numpy(t, y, n_iter, freq_centre, fft_half_width, resolution, np_half_width, chunk_size=100, window=None, mph=1):
    """
    CLEAN procedure using numpy matrix multiplication on a small frequency range, using nufftpy to find the approximate
    frequency of the highest peak beforehand.
    """
    # # # Preparation # # #
    import nufftpy
    p_freq = []
    p_power = []
    p_alpha = []
    p_beta = []
    freq_centre = [freq_centre]
    # Get amount of frequency steps for nufft1
    steps = 2 * int((2 * fft_half_width) / resolution)
    # Make carbon copy of signal for manipulation
    y_copy = np.copy(y)

    # # # # CLEAN LOOP # # # #
    for i in range(0, n_iter):
        t1 = tm.time()

        # # # Do FFT to find expected highest peak area # # #
        # Get cyclic frequencies for nufft1
        freq = nufftpy.nufftfreqs(steps, df=resolution)
        freq = freq[len(freq) // 2:-1]  # Take only positive frequencies
        # Call nufft1 to perform nufft calculation
        harmonic_content = nufftpy.nufft1(t, y_copy, steps, df=(resolution * 2 * np.pi))
        harmonic_content = harmonic_content[len(harmonic_content) // 2:-1]
        spectral_power_fft = harmonic_content.real ** 2 + harmonic_content.imag ** 2
        # Detect peaks in power spectrum, and find power, frequency, alpha and beta values
        peaks = detect_peaks(spectral_power_fft, mph=mph)
        peaks_power = spectral_power_fft[peaks]
        peaks_freq = freq[peaks]
        # Find highest peak
        try:
            max_indx = np.argmax(peaks_power)
            max_freq = peaks_freq[max_indx]
        except ValueError:
            print('no more peaks, i = ', i)
            break
        t2 = tm.time()
        print('fft time: ', t2-t1)

        # # # Do sine-cosine fitting to estimate power spectrum using numpy matrix multiplication # # #
        spectral_res = create_pspectrum.numpy(y_copy, t, half_width=np_half_width, freq_centre=[max_freq],
                                              resolution=resolution, chunk_size=1000)
        spectral_res=spectral_res[0]
        spectral_power = spectral_res[1]
        # cut data to window
        window = None
        if window is None:
            window = range(0, len(spectral_power))
        spectral_power = spectral_power[window]
        # # Do peak finding # #
        peaks = detect_peaks(spectral_power, mph=mph)
        peaks_power = spectral_power[peaks]
        peaks_alpha = spectral_res[2][peaks]
        peaks_beta = spectral_res[3][peaks]
        peaks_freq = spectral_res[0][peaks]
        # Find highest peak
        try:
            max_indx = np.argmax(peaks_power)
            max_freq = peaks_freq[max_indx]
            max_power = peaks_power[max_indx]
            max_alpha = peaks_alpha[max_indx]
            max_beta = peaks_beta[max_indx]
        except ValueError:
            break

        # plt.figure()
        # plt.plot(freq / 0.000001, spectral_power_fft*4)
        # plt.plot(peaks_freq / 0.000001, peaks_power, 'r*', markersize=4)
        # plt.plot(max_freq / 0.000001, max_power, 'b*', markersize=6)
        # plt.show(block=True)

        # # # Calculate harmonic signal corresponding to highest peak in power spectrum # # #
        max_signal = (max_beta * np.cos(2*np.pi*max_freq * t) + max_alpha * np.sin(2*np.pi*max_freq * t))
        # plt.plot(t, y_copy)
        # plt.plot(t, max_signal, 'r--')
        # plt.show()

        # # Subtract calculated signal from y_copy and save the peak used # #
        y_copy -= max_signal
        p_power.append(max_power)
        p_alpha.append(max_alpha)
        p_beta.append(max_beta)
        p_freq.append(max_freq)
        t3 = tm.time()
        print('numpy time: ', t3-t2)

    # # # # Results # # # #
    # Calculate original power spectrum
    spectral_res = create_pspectrum.numpy(y, t, freq_centre=freq_centre, half_width=fft_half_width,
                                          resolution=resolution, chunk_size=chunk_size)
    spectral_res = spectral_res[0]
    p_freq = np.asarray(p_freq)
    # Plot spectrum and found peaks
    plt.figure()
    plt.plot(spectral_res[0] / 0.000001, spectral_res[1])
    plt.plot(p_freq / 0.000001, p_power, 'r*', markersize=4)
    plt.show()
    # Save peaks found by cleaning in .dat file
    ps_f.writer('clean_peaks_numpy', p_freq, p_power)
    return p_freq, p_power, p_alpha, p_beta