Esempio n. 1
0
def generate_current_integrand(
    width: float,
    field_to_k_factor: float,
    current_distribution: np.ndarray,
    phase_distribution: np.ndarray,
):
    """Integrand to compute the current through a junction at a given field.

    """
    step = width / len(current_distribution)

    @cfunc(float64(intc, CPointer(float64)))
    def real_current_integrand(n, args):
        """Cfunc to be used with quad to calculate the current from the distribution.

        """
        pos, field = args[0], args[1]
        x = int(pos // step)
        return current_distribution[x] * np.cos(
            (phase_distribution[x] + field_to_k_factor * pos) * field)

    @cfunc(float64(intc, CPointer(float64)))
    def imag_current_integrand(n, args):
        """Cfunc to be used with quad to calculate the current from the distribution.

        """
        pos, field = args[0], args[1]
        x = int(pos // step)
        return current_distribution[x] * np.sin(
            (phase_distribution[x] + field_to_k_factor * pos) * field)

    return (
        LowLevelCallable(real_current_integrand.ctypes),
        LowLevelCallable(imag_current_integrand.ctypes),
    )
Esempio n. 2
0
def jit_filter_function(filter_function):
    jitted_function = numba.jit(filter_function, nopython=True)
    @cfunc(intc(CPointer(float64), intp, CPointer(float64), voidptr))
    def wrapped(values_ptr, len_values, result, data):
        values = carray(values_ptr, (len_values,), dtype=float64)
        result[0] = jitted_function(values)
        return 1
    return LowLevelCallable(wrapped.ctypes)
Esempio n. 3
0
def jit_filter_function(filter_function):
    """Decorator for use with scipy.ndimage.generic_filter."""
    jitted_function = numba.jit(filter_function, nopython=True)

    @cfunc(intc(CPointer(float64), intp, CPointer(float64), voidptr))
    def wrapped(values_ptr, len_values, result, data):
        values = carray(values_ptr, (len_values, ), dtype=float64)
        result[0] = jitted_function(values)
        return 1

    return LowLevelCallable(wrapped.ctypes)
Esempio n. 4
0
def jit_geometric_function(geometric_function):
    jitted_function = numba.jit(geometric_function, nopython=True)

    @cfunc(intc(CPointer(intp), CPointer(float64), intc, intc, voidptr))
    def wrapped(output_ptr, input_ptr, output_rank, input_rank, user_data):
        output_coords = carray(output_ptr, (output_rank, ), dtype=intp)
        input_coords = carray(input_ptr, (output_rank, ), dtype=float64)
        jitted_function(output_coords, input_coords)
        return 1

    return LowLevelCallable(wrapped.ctypes)
Esempio n. 5
0
def jit_integrand_function(integrand_function):
    """ decorator function to compile numerical integration routine

    This function is used to build AMPS functions as pre-compiled routines
    for faster evalution.

    From the StackOverflow answer:
    https://stackoverflow.com/questions/49683653/how-to-pass-additional-parameters-to-numba-cfunc-passed-as-lowlevelcallable-to-s

    We are using the function signature:
    double func(int n, double *xx)

    Where n is the length of xx array, xx[0] is the variable to be integrated over.
    The rest is the extra arguments that would normally be passed in 'args' of
    integrator 'scipy.integrate.quad'

    Usage:
    @jit_integrand_function
    def f(x, *args):
        a = args[0]
        b = args[1]
        return np.exp(-a*x/b)

    quad(f, 0, pi, args=(a,b))

    """
    jitted_function = jit(integrand_function, nopython=True)

    @cfunc(float64(intc, CPointer(float64)))
    def wrapped(n, xx):
        """ """
        return jitted_function(xx[0], xx[1], xx[2], xx[3])

    return LowLevelCallable(wrapped.ctypes)
Esempio n. 6
0
def jit_integrand_function(integrand_function):
    jitted_function = numba.jit(integrand_function, nopython=True)
    @cfunc(float64(intc, CPointer(float64)))
    def wrapped(n, xx):
        values = carray(xx,n)
        return jitted_function(values)
    return LowLevelCallable(wrapped.ctypes)
Esempio n. 7
0
def jit_psf5args(func):
    """A complicated piece of code used by numba to compile the PSF.

    This one works for `gaussianWithConstantSkyPsf()`
    """
    jitted_function = njit(func)

    @cfunc(float64(intc, CPointer(float64)))
    def wrapped(n, xx):
        return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5], xx[6])

    return LowLevelCallable(wrapped.ctypes)
Esempio n. 8
0
def jit_integrand(integrand_function):
    jitted_function = numba.jit(integrand_function, nopython=True)
    no_args = len(inspect.getfullargspec(integrand_function).args)

    wrapped = None

    if no_args == 4:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3])
    elif no_args == 5:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4])
    elif no_args == 6:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5])
    elif no_args == 7:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6])
    elif no_args == 8:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7])
    elif no_args == 9:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7], xx[8])
    elif no_args == 10:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7], xx[8], xx[9])
    elif no_args == 11:

        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7], xx[8], xx[9], xx[10])

    cf = cfunc(float64(intc, CPointer(float64)))

    return LowLevelCallable(cf(wrapped).ctypes)
def jit_integrand(integrand_function):

    jitted_function = decorator_util.jit(nopython=True,
                                         cache=True)(integrand_function)
    no_args = len(inspect.getfullargspec(integrand_function).args)

    wrapped = None

    if no_args == 4:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3])

    elif no_args == 5:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4])

    elif no_args == 6:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5])

    elif no_args == 7:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6])

    elif no_args == 8:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7])

    elif no_args == 9:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7], xx[8])

    elif no_args == 10:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5],
                                   xx[6], xx[7], xx[8], xx[9])

    elif no_args == 11:
        # noinspection PyUnusedLocal
        def wrapped(n, xx):
            return jitted_function(
                xx[0],
                xx[1],
                xx[2],
                xx[3],
                xx[4],
                xx[5],
                xx[6],
                xx[7],
                xx[8],
                xx[9],
                xx[10],
            )

    cf = cfunc(float64(intc, CPointer(float64)))

    return LowLevelCallable(cf(wrapped).ctypes)
Esempio n. 10
0
import os

PINK = np.array([255, 15, 255]) / 255.
YELLOW = np.array([255, 255, 15]) / 255.


@jit
def tss(a):

    # total sum of square difference
    total_sum_of_squares = np.sum((a - np.mean(a))**2)

    return total_sum_of_squares


@cfunc(intc(CPointer(float64), intp, CPointer(float64), voidptr))
def nbtss(values_ptr, len_values, result, data):

    # total sum of square difference (C-implementation for speedup)
    values = carray(values_ptr, (len_values, ), dtype=float64)
    sum = 0.0
    for v in values:
        sum += v
    mean = sum / float64(len_values)
    result[0] = 0
    for v in values:
        result[0] += (v - mean)**2

    return 1

        lam = D0 * e0 / (b0 * (1. - delta)) * \
            ((e0 / e)**(1. - delta) - (e0 / mx)**(1. - delta))

        fact_e = 1. / (b * (4. * np.pi * lam)**1.5)
        # Term with purely radial dependence
        r_term = r**2 * np.exp(-(r * kpc_to_cm)**2 / (4. * lam))
        # Term from performing theta integral
        K_term = K_full(r, d, rs, rhos, gamma)

        return fact_const * fact_e * K_term * (r_term * kpc_to_cm**3)


dphi_e_dr_jit = jit(dphi_e_dr, nopython=True)


@cfunc(float64(intc, CPointer(float64)))
def dphi_e_dr_cfunc(n, xx):
    return dphi_e_dr_jit(xx[0], xx[1], xx[2], xx[3], xx[4], xx[5], xx[6],
                         xx[7], xx[8])


dphi_e_dr_llc = LowLevelCallable(dphi_e_dr_cfunc.ctypes)


# J-factor integrand
def dJ_dr(r, th_max, d, rs, rhos, gamma):
    # Numerically stable expression for solid angle subtended by target
    dOmega = 4 * np.pi * np.sin(0.5 * th_max)**2
    th_term = K(r, 0, d, rs, rhos, gamma) - K(r, th_max, d, rs, rhos, gamma)
    return 2 * np.pi / dOmega * th_term
Esempio n. 12
0
from numba import carray, cfunc, njit
from numba.types import CPointer, double, intc, void

from pypde.utils import nargs

F_SIG = void(CPointer(double), CPointer(double), CPointer(double), intc)
B_SIG = void(CPointer(double), CPointer(double), intc)
S_SIG = void(CPointer(double), CPointer(double))


def generate_signatures(nFargs, nBargs):

    if nFargs == 1:
        Fsig = 'double[:](double[:])'
    elif nFargs == 2:
        Fsig = 'double[:](double[:], intc)'
    elif nFargs == 3:
        Fsig = 'double[:](double[:], double[:,:], intc)'

    if nBargs == 1:
        Bsig = 'double[:,:](double[:])'
    elif nBargs == 2:
        Bsig = 'double[:,:](double[:], intc)'

    Ssig = 'double[:](double[:])'

    return Fsig, Bsig, Ssig


def generate_cfuncs(F, B, S, ndim, V):