Esempio n. 1
0
def inverse_function():
    print("Testing -- inverse_mod function--")
    print("Since this function will raise ValueError easily from random\n"
          "generating numbers, we will use three differen pair of numbers\n"
          "to test its functionality.")
    a = 57
    b = 61
    tf1 = nmtf.inverse_mod(tf.constant(a), tf.constant(b))
    nm1 = nm.inverse_mod(a, b)
    print("nmtf.inverse_mod({0}, {1}) = ({2}, {3})".format(
        a, b, tf1[0].eval(), tf1[1].eval()))
    print("  nm.inverse_mod({0}, {1}) = {2}".format(a, b, nm1))
    a = 23
    b = 58
    tf1 = nmtf.inverse_mod(tf.constant(a), tf.constant(b))
    nm1 = nm.inverse_mod(a, b)
    print("nmtf.inverse_mod({0}, {1}) = ({2}, {3})".format(
        a, b, tf1[0].eval(), tf1[1].eval()))
    print("  nm.inverse_mod({0}, {1}) = {2}".format(a, b, nm1))
    print("")
    print(
        "The last pair of numbers will make the normal inverse_mod function\n"
        "raise an ValueError. For the tensorflow version, the second parameter\n"
        "is 0")
    a = 10
    b = 34
    tf1 = nmtf.inverse_mod(tf.constant(a), tf.constant(b))
    #nm1 = nm.inverse_mod(a, b)
    print("nmtf.inverse_mod({0}, {1}) = ({2}, {3})".format(
        a, b, tf1[0].eval(), tf1[1].eval()))
		def reducemat(submat):
			pivotrow=0
			for rj in range(thedegree):
				# Find the pivot element in this column
				for ri in range(pivotrow,len(submat)):
					if (submat[ri][rj] != 0):
						# Swap rows
						temp = submat[pivotrow]; submat[pivotrow] = submat[ri]; submat[ri] = temp
						break
				else:
					continue # No pivot in this column - move to next column (for rj)
				# Subtract multiples of pivot row from lower rows (zeroing out column elts)
				invpivot = numbthy.inverse_mod(submat[pivotrow][rj],themod)
				for ri in range(pivotrow+1,len(submat)):
					rowmult = mod(invpivot*submat[ri][rj],themod)
					for rjj in range(rj,numcols):
						submat[ri][rjj] = mod(submat[ri][rjj]-rowmult*submat[pivotrow][rjj],themod)
					#if not any(themat[i][:thedegree]): return themat[i][thedegree:]
				pivotrow += 1  # Move down to next row
Esempio n. 3
0
 def reducemat(submat):
     pivotrow = 0
     for rj in range(thedegree):
         # Find the pivot element in this column
         for ri in range(pivotrow, len(submat)):
             if (submat[ri][rj] != 0):
                 # Swap rows
                 temp = submat[pivotrow]
                 submat[pivotrow] = submat[ri]
                 submat[ri] = temp
                 break
         else:
             continue  # No pivot in this column - move to next column (for rj)
         # Subtract multiples of pivot row from lower rows (zeroing out column elts)
         invpivot = numbthy.inverse_mod(submat[pivotrow][rj], themod)
         for ri in range(pivotrow + 1, len(submat)):
             rowmult = mod(invpivot * submat[ri][rj], themod)
             for rjj in range(rj, numcols):
                 submat[ri][rjj] = mod(
                     submat[ri][rjj] - rowmult * submat[pivotrow][rjj],
                     themod)
             #if not any(themat[i][:thedegree]): return themat[i][thedegree:]
         pivotrow += 1  # Move down to next row
Esempio n. 4
0
#5 base 2 in Z13 = 9
#x0 = 2
#x1 = 1

#p=1073676287
#g=1010343267
#h=857348958
#B=pow(2, 10)

#1026831 (*this is the solution*)
#x0 = 1002;
#x1 = 783;

print datetime.datetime.now()

gi = numbthy.inverse_mod(g, p)
gPowB = numbthy.power_mod(g, B, p)

print "p", p
print "g", g
print "h", h
print "B", B
print "inverse g", gi
print "gPowB", gPowB

left = {}

powX1 = h % p
left[powX1] = 0
x1 = 1
Esempio n. 5
0
def f2(p, g, h, x1):
    denom = power_mod(g, x1, p)

    return (h * inverse_mod(denom, p)) % p
Esempio n. 6
0
def DecryptCipher(CipherVal, EncExp, p1, q1):
    DecExp = inverse_mod(EncExp, (p1 - 1) * (q1 - 1))
    MsgVal = power_mod(CipherVal, DecExp, p1 * q1)

    return MsgVal
Esempio n. 7
0
from numbthy import inverse_mod, power_mod

p = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084171

g = 11717829880366207009516117596335367088558084999998952205599979459063929499736583746670572176471460312928594829675428279466566527115212748467589894601965568

h = 3239475104050450443565264378728065788649097520952449527834792452971981976143292558073856937958553180532878928001494706097394108577585732452307673444020333

table = []

B = 2**20

for x1 in range(B + 1):
    denominator = inverse_mod(power_mod(g, x1, p), p)
    table.append((h * denominator) % p)

for x0 in range(B + 1):
    power = B * x0
    trial = power_mod(g, power, p)
    print 'Try ' + str(x0)
    try:
        x1 = table.index(trial)
        print x0, x1
        print x0 * B + x1
        break
    except ValueError:
        continue