Esempio n. 1
0
    def test_jacobian(self):
        print('Test Jacobian')
        x = self.test_x
        analytic_solution = para_est.Rosenbrock()
        h = self.fd_step

        # Analytic
        j_analytic = analytic_solution.j(x)

        # numdifftools
        j_ndifftools = nd.Jacobian(analytic_solution.f_vector)(x)
        j_scipy = ndscipy.Jacobian(analytic_solution.f_vector, h)(x)

        # para_est
        self.ps.set_objective_function(analytic_solution.f_vector, metric='e')
        j_ps = self.ps.evaluate_derivatives(x, h, evaluate='jacobian')

        # Log
        print(' j analytic  : {0}'.format(j_analytic))
        print(' j_ndifftools: {0}'.format(j_ndifftools))
        print(' j scipy     : {0}'.format(j_scipy))
        print(' j ps        : {0}'.format(j_ps))
        print(' ps function evaluation count: {0}'.format(
            self.ps.logger.get_f_eval_count()))

        self.assertEqual(
            True, np.all(np.isclose(j_ps, j_analytic, rtol=1.e-14,
                                    atol=1.e-2)))
Esempio n. 2
0
    def test_on_scalar_function():
        def fun(x):
            return x[0] * x[1] * x[2] + np.exp(x[0]) * x[1]

        for method in ['forward', 'backward', "central", "complex"]:
            j_fun = nd.Jacobian(fun, method=method)
            x = j_fun([3., 5., 7.])
            assert_allclose(x, [135.42768462, 41.08553692, 15.])
Esempio n. 3
0
def main(problem_sizes=(4, 8, 16, 32, 64, 96)):
    fixed_step = MinStepGenerator(num_steps=1, use_exact_steps=True, offset=0)
    epsilon = MaxStepGenerator(num_steps=14,
                               use_exact_steps=True,
                               step_ratio=1.6,
                               offset=0)
    adaptiv_txt = '_adaptive_{0:d}_{1!s}_{2:d}'.format(epsilon.num_steps,
                                                       str(epsilon.step_ratio),
                                                       epsilon.offset)
    gradient_funs = OrderedDict()
    hessian_funs = OrderedDict()

    hessian_fun = 'Hessdiag'
    hessian_fun = 'Hessian'

    if nda is not None:
        nda_method = 'forward'
        nda_txt = 'algopy_' + nda_method
        gradient_funs[nda_txt] = nda.Jacobian(1, method=nda_method)

        hessian_funs[nda_txt] = getattr(nda, hessian_fun)(1, method=nda_method)
    ndc_hessian = getattr(nd, hessian_fun)

    order = 2
    for method in ['forward', 'central', 'complex']:
        method2 = method + adaptiv_txt
        options = dict(method=method, order=order)
        gradient_funs[method] = nd.Jacobian(1, step=fixed_step, **options)
        gradient_funs[method2] = nd.Jacobian(1, step=epsilon, **options)
        hessian_funs[method] = ndc_hessian(1, step=fixed_step, **options)
        hessian_funs[method2] = ndc_hessian(1, step=epsilon, **options)

    hessian_funs['forward_statsmodels'] = nds.Hessian(1, method='forward')
    hessian_funs['central_statsmodels'] = nds.Hessian(1, method='central')
    hessian_funs['complex_statsmodels'] = nds.Hessian(1, method='complex')

    gradient_funs['forward_statsmodels'] = nds.Jacobian(1, method='forward')
    gradient_funs['central_statsmodels'] = nds.Jacobian(1, method='central')
    gradient_funs['complex_statsmodels'] = nds.Jacobian(1, method='complex')
    gradient_funs['forward_scipy'] = nsc.Jacobian(1, method='forward')
    gradient_funs['central_scipy'] = nsc.Jacobian(1, method='central')
    gradient_funs['complex_scipy'] = nsc.Jacobian(1, method='complex')

    run_gradient_and_hessian_benchmarks(gradient_funs, hessian_funs,
                                        problem_sizes)
Esempio n. 4
0
    def test_on_vector_valued_function(self):
        xdata = np.arange(0, 1, 0.1)
        ydata = 1 + 2 * np.exp(0.75 * xdata)

        def fun(c):
            return (c[0] + c[1] * np.exp(c[2] * xdata) - ydata)**2

        for method in ['forward', 'backward', "central", "complex"]:

            j_fun = nd.Jacobian(fun, method=method)
            J = j_fun([1, 2, 0.75])  # should be numerically zero
            assert_allclose(J, np.zeros((ydata.size, 3)), atol=1e-6)
Esempio n. 5
0
    def test_scalar_to_vector(val):
        def fun(x):
            dtype = complex if isinstance(x, complex) else float
            out = np.zeros((3, ), dtype=dtype)
            out[0] = x
            out[1] = x**2
            out[2] = x**3
            return out

        for method in [
                'backward',
                'forward',
                "central",
        ]:  # TODO:  "complex" does not work
            j0 = nd.Jacobian(fun, method=method)(val).T
            assert_allclose(j0, [[1., 2 * val, 3 * val**2]], atol=1e-6)
Esempio n. 6
0
    def test_issue_25(self):
        def g_fun(x):
            out = np.zeros((2, 2), dtype=float)
            out[0, 0] = x[0]
            out[0, 1] = x[1]
            out[1, 0] = x[0]
            out[1, 1] = x[1]
            return out

        dg_dx = nd.Jacobian(g_fun)  # TODO:  method='reverse' fails
        x = np.array([1, 2])

        tv = [[[1., 0.], [0., 1.]], [[1., 0.], [0., 1.]]]
        _EPS = np.MachAr().eps
        epsilon = _EPS**(1. / 4)
        assert_allclose(nd.approx_fprime(x, g_fun, epsilon), tv)
        dg = dg_dx(x)
        assert_allclose(dg, tv)
Esempio n. 7
0
    def test_on_matrix_valued_function(self):
        def fun(x):

            f0 = x[0]**2 + x[1]**2
            f1 = x[0]**3 + x[1]**3

            s0 = f0.size
            s1 = f1.size
            out = np.zeros((2, (s0 + s1) // 2), dtype=float)
            out[0, :] = f0
            out[1, :] = f1
            return out

        x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=float)

        y = fun(x)
        assert_allclose(y, [[26., 40., 58., 80.], [126., 224., 370., 576.]])

        for method in [
                'forward',
        ]:  # TODO: 'reverse' fails
            jaca = nd.Jacobian(fun, method=method)

            assert_allclose(jaca([1, 2]), [[[2., 4.]], [[3., 12.]]])
            assert_allclose(jaca([3, 4]), [[[6., 8.]], [[27., 48.]]])

            assert_allclose(jaca([[1, 2], [3, 4]]),
                            [[[2., 0., 6., 0.], [0., 4., 0., 8.]],
                             [[3., 0., 27., 0.], [0., 12., 0., 48.]]])

            val = jaca(x)
            assert_allclose(val, [[[2., 0., 0., 0., 10., 0., 0., 0.],
                                   [0., 4., 0., 0., 0., 12., 0., 0.],
                                   [0., 0., 6., 0., 0., 0., 14., 0.],
                                   [0., 0., 0., 8., 0., 0., 0., 16.]],
                                  [[3., 0., 0., 0., 75., 0., 0., 0.],
                                   [0., 12., 0., 0., 0., 108., 0., 0.],
                                   [0., 0., 27., 0., 0., 0., 147., 0.],
                                   [0., 0., 0., 48., 0., 0., 0., 192.]]])
Esempio n. 8
0
for method in ['forward', 'central', 'complex']:
    method2 = method + adaptiv_txt
    options = dict(method=method, order=order)
    gradient_funs[method] = nd.Jacobian(1, step=fixed_step, **options)
    gradient_funs[method2] = nd.Jacobian(1, step=epsilon, **options)
    hessian_funs[method] = ndc_hessian(1, step=fixed_step, **options)
    hessian_funs[method2] = ndc_hessian(1, step=epsilon, **options)

hessian_funs['forward_statsmodels'] = nds.Hessian(1, method='forward')
hessian_funs['central_statsmodels'] = nds.Hessian(1, method='central')
hessian_funs['complex_statsmodels'] = nds.Hessian(1, method='complex')

gradient_funs['forward_statsmodels'] = nds.Jacobian(1, method='forward')
gradient_funs['central_statsmodels'] = nds.Jacobian(1, method='central')
gradient_funs['complex_statsmodels'] = nds.Jacobian(1, method='complex')
gradient_funs['forward_scipy'] = nsc.Jacobian(1, method='forward')
gradient_funs['central_scipy'] = nsc.Jacobian(1, method='central')
gradient_funs['complex_scipy'] = nsc.Jacobian(1, method='complex')


def _compute_benchmark(functions, problem_sizes):
    result_list = []
    for n in problem_sizes:
        print('n=', n)
        num_methods = len(functions)
        results = np.zeros((num_methods, 3))
        ref_g = None
        f = BenchmarkFunction(n)
        for i, (_key, function) in enumerate(functions.items()):
            t = timeit.default_timer()
            function.fun = f