Esempio n. 1
0
def polyadd(a1, a2):
    """
    Find the sum of two polynomials.

    Returns the polynomial resulting from the sum of two input polynomials.
    Each input must be either a poly1d object or a 1D sequence of polynomial
    coefficients, from highest to lowest degree.

    Parameters
    ----------
    a1, a2 : array_like or poly1d object
        Input polynomials.

    Returns
    -------
    out : ndarray or poly1d object
        The sum of the inputs. If either input is a poly1d object, then the
        output is also a poly1d object. Otherwise, it is a 1D array of
        polynomial coefficients from highest to lowest degree.

    See Also
    --------
    poly1d : A one-dimensional polynomial class.
    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

    Examples
    --------
    >>> np.polyadd([1, 2], [9, 5, 4])
    array([9, 6, 6])

    Using poly1d objects:

    >>> p1 = np.poly1d([1, 2])
    >>> p2 = np.poly1d([9, 5, 4])
    >>> print p1
    1 x + 2
    >>> print p2
       2
    9 x + 5 x + 4
    >>> print np.polyadd(p1, p2)
       2
    9 x + 6 x + 6

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 2
0
def vstack(tup):
    """ Stack arrays in sequence vertically (row wise)

        Description:
            Take a sequence of arrays and stack them vertically
            to make a single array.  All arrays in the sequence
            must have the same shape along all but the first axis.
            vstack will rebuild arrays divided by vsplit.
        Arguments:
            tup -- sequence of arrays.  All arrays must have the same
                   shape.
        Examples:
            >>> import numpy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> numpy.vstack((a,b))
            array([[1, 2, 3],
                   [2, 3, 4]])
            >>> a = array([[1],[2],[3]])
            >>> b = array([[2],[3],[4]])
            >>> numpy.vstack((a,b))
            array([[1],
                   [2],
                   [3],
                   [2],
                   [3],
                   [4]])

    """
    return _nx.concatenate(map(atleast_2d,tup),0)
Esempio n. 3
0
def hstack(tup):
    """ Stack arrays in sequence horizontally (column wise)

        Description:
            Take a sequence of arrays and stack them horizontally
            to make a single array.  All arrays in the sequence
            must have the same shape along all but the second axis.
            hstack will rebuild arrays divided by hsplit.
        Arguments:
            tup -- sequence of arrays.  All arrays must have the same
                   shape.
        Examples:
            >>> import numpy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> numpy.hstack((a,b))
            array([1, 2, 3, 2, 3, 4])
            >>> a = array([[1],[2],[3]])
            >>> b = array([[2],[3],[4]])
            >>> numpy.hstack((a,b))
            array([[1, 2],
                   [2, 3],
                   [3, 4]])

    """
    return _nx.concatenate(map(atleast_1d,tup),1)
Esempio n. 4
0
def column_stack(tup):
    """ Stack 1D arrays as columns into a 2D array

        Description:
            Take a sequence of 1D arrays and stack them as columns
            to make a single 2D array.  All arrays in the sequence
            must have the same first dimension.  2D arrays are
            stacked as-is, just like with hstack.  1D arrays are turned
            into 2D columns first.

        Arguments:
            tup -- sequence of 1D or 2D arrays.  All arrays must have the same
                   first dimension.
        Examples:
            >>> import numpy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> numpy.column_stack((a,b))
            array([[1, 2],
                   [2, 3],
                   [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v,copy=False,subok=True)
        if arr.ndim < 2:
            arr = array(arr,copy=False,subok=True,ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays,1)
Esempio n. 5
0
def dstack(tup):
    """ Stack arrays in sequence depth wise (along third dimension)

    Description:
        Take a sequence of arrays and stack them along the third axis.
        All arrays in the sequence must have the same shape along all
        but the third axis.  This is a simple way to stack 2D arrays
        (images) into a single 3D array for processing.
        dstack will rebuild arrays divided by dsplit.
    Arguments:
        tup -- sequence of arrays.  All arrays must have the same
               shape.
    Examples:
        >>> import numpy
        >>> a = array((1,2,3))
        >>> b = array((2,3,4))
        >>> numpy.dstack((a,b))
        array([[[1, 2],
                [2, 3],
                [3, 4]]])
        >>> a = array([[1],[2],[3]])
        >>> b = array([[2],[3],[4]])
        >>> numpy.dstack((a,b))
        array([[[1, 2]],
        <BLANKLINE>
               [[2, 3]],
        <BLANKLINE>
               [[3, 4]]])

    """
    return _nx.concatenate(map(atleast_3d,tup),2)
Esempio n. 6
0
def kron(a,b):
    """kronecker product of a and b

    Kronecker product of two arrays is block array
    [[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b  ],
     [ ...                                   ...   ],
     [ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b  ]]
    """
    wrapper = get_array_wrap(a, b)
    b = asanyarray(b)
    a = array(a,copy=False,subok=True,ndmin=b.ndim)
    ndb, nda = b.ndim, a.ndim
    if (nda == 0 or ndb == 0):
        return _nx.multiply(a,b)
    as_ = a.shape
    bs = b.shape
    if not a.flags.contiguous:
        a = reshape(a, as_)
    if not b.flags.contiguous:
        b = reshape(b, bs)
    nd = ndb
    if (ndb != nda):
        if (ndb > nda):
            as_ = (1,)*(ndb-nda) + as_
        else:
            bs = (1,)*(nda-ndb) + bs
            nd = nda
    result = outer(a,b).reshape(as_+bs)
    axis = nd-1
    for _ in xrange(nd):
        result = concatenate(result, axis=axis)
    if wrapper is not None:
        result = wrapper(result)
    return result
Esempio n. 7
0
def polysub(a1, a2):
    """
    Returns difference from subtraction of two polynomials input as sequences.

    Returns difference of polynomials; `a1` - `a2`.  Input polynomials are
    represented as an array_like sequence of terms or a poly1d object.

    Parameters
    ----------
    a1 : {array_like, poly1d}
        Minuend polynomial as sequence of terms.
    a2 : {array_like, poly1d}
        Subtrahend polynomial as sequence of terms.

    Returns
    -------
    out : {ndarray, poly1d}
        Array representing the polynomial terms.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
def stack(arrays, axis=0):
    """
    Join a sequence of arrays along a new axis.
    The `axis` parameter specifies the index of the new axis in the dimensions
    of the result. For example, if ``axis=0`` it will be the first dimension
    and if ``axis=-1`` it will be the last dimension.
    .. versionadded:: 1.10.0
    Parameters
    ----------
    arrays : sequence of array_like
        Each array must have the same shape.
    axis : int, optional
        The axis in the result array along which the input arrays are stacked.
    Returns
    -------
    stacked : ndarray
        The stacked array has one more dimension than the input arrays.
    See Also
    --------
    concatenate : Join a sequence of arrays along an existing axis.
    split : Split array into a list of multiple sub-arrays of equal size.
    Examples
    --------
    >>> arrays = [np.random.randn(3, 4) for _ in range(10)]
    >>> np.stack(arrays, axis=0).shape
    (10, 3, 4)
    >>> np.stack(arrays, axis=1).shape
    (3, 10, 4)
    >>> np.stack(arrays, axis=2).shape
    (3, 4, 10)
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.stack((a, b))
    array([[1, 2, 3],
           [2, 3, 4]])
    >>> np.stack((a, b), axis=-1)
    array([[1, 2],
           [2, 3],
           [3, 4]])
    """
    arrays = [asanyarray(arr) for arr in arrays]
    if not arrays:
        raise ValueError('need at least one array to stack')

    shapes = set(arr.shape for arr in arrays)
    if len(shapes) != 1:
        raise ValueError('all input arrays must have the same shape')

    result_ndim = arrays[0].ndim + 1
    if not -result_ndim <= axis < result_ndim:
        msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
        raise IndexError(msg)
    if axis < 0:
        axis += result_ndim

    sl = (slice(None),) * axis + (_nx.newaxis,)
    expanded_arrays = [arr[sl] for arr in arrays]
    return _nx.concatenate(expanded_arrays, axis=axis)
def polysub(a1, a2):
    """
    Difference (subtraction) of two polynomials.

    Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
    `a1` and `a2` can be either array_like sequences of the polynomials'
    coefficients (including coefficients equal to zero), or `poly1d` objects.

    Parameters
    ----------
    a1, a2 : array_like or poly1d
        Minuend and subtrahend polynomials, respectively.

    Returns
    -------
    out : ndarray or poly1d
        Array or `poly1d` object of the difference polynomial's coefficients.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 10
0
def polysub(a1, a2):
    """
    Difference (subtraction) of two polynomials.

    Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
    `a1` and `a2` can be either array_like sequences of the polynomials'
    coefficients (including coefficients equal to zero), or `poly1d` objects.

    Parameters
    ----------
    a1, a2 : array_like or poly1d
        Minuend and subtrahend polynomials, respectively.

    Returns
    -------
    out : ndarray or poly1d
        Array or `poly1d` object of the difference polynomial's coefficients.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 11
0
def polysub(a1, a2):
    """Subtracts two polynomials represented as sequences
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 12
0
def _leading_trailing(a):
    import numpy.core.numeric as _nc
    if a.ndim == 1:
        if len(a) > 2*_summaryEdgeItems:
            b = _nc.concatenate((a[:_summaryEdgeItems],
                                     a[-_summaryEdgeItems:]))
        else:
            b = a
    else:
        if len(a) > 2*_summaryEdgeItems:
            l = [_leading_trailing(a[i]) for i in range(
                min(len(a), _summaryEdgeItems))]
            l.extend([_leading_trailing(a[-i]) for i in range(
                min(len(a), _summaryEdgeItems),0,-1)])
        else:
            l = [_leading_trailing(a[i]) for i in range(0, len(a))]
        b = _nc.concatenate(tuple(l))
    return b
Esempio n. 13
0
File: compat.py Progetto: rc/sfepy
 def block_recursion(arrays, depth=0):
     if depth < max_depth:
         if len(arrays) == 0:
             raise ValueError('Lists cannot be empty')
         arrs = [block_recursion(arr, depth+1) for arr in arrays]
         return _nx.concatenate(arrs, axis=-(max_depth-depth))
     else:
         # We've 'bottomed out' - arrays is either a scalar or an array
         # type(arrays) is not list
         return atleast_nd(arrays, result_ndim)
Esempio n. 14
0
 def __setitem__(self, key, val):
     ind = self.order - key
     if key < 0:
         raise ValueError("Does not support negative powers.")
     if key > self.order:
         zr = NX.zeros(key-self.order, self.coeffs.dtype)
         self._coeffs = NX.concatenate((zr, self.coeffs))
         ind = 0
     self._coeffs[ind] = val
     return
def append(arr, values, axis=None):
    """Append to the end of an array along axis (ravel first if None)
    """
    arr = asanyarray(arr)
    if axis is None:
        if arr.ndim != 1:
            arr = arr.ravel()
        values = ravel(values)
        axis = arr.ndim-1
    return concatenate((arr, values), axis=axis)
Esempio n. 16
0
 def block_recursion(arrays, depth=0):
     if depth < max_depth:
         if len(arrays) == 0:
             raise ValueError('Lists cannot be empty')
         arrs = [block_recursion(arr, depth+1) for arr in arrays]
         return _nx.concatenate(arrs, axis=-(max_depth-depth))
     else:
         # We've 'bottomed out' - arrays is either a scalar or an array
         # type(arrays) is not list
         return atleast_nd(arrays, result_ndim)
Esempio n. 17
0
def _leading_trailing(a):
    import numpy.core.numeric as _nc

    if a.ndim == 1:
        if len(a) > 2 * _summaryEdgeItems:
            b = _nc.concatenate((a[:_summaryEdgeItems],
                                 a[-_summaryEdgeItems:]))
        else:
            b = a
    else:
        if len(a) > 2 * _summaryEdgeItems:
            l = [_leading_trailing(a[i]) for i in range(
                min(len(a), _summaryEdgeItems))]
            l.extend([_leading_trailing(a[-i]) for i in range(
                min(len(a), _summaryEdgeItems), 0, -1)])
        else:
            l = [_leading_trailing(a[i]) for i in range(0, len(a))]
        b = _nc.concatenate(tuple(l))
    return b
Esempio n. 18
0
def append(arr, values, axis=None):
    """Append to the end of an array along axis (ravel first if None)
    """
    arr = asanyarray(arr)
    if axis is None:
        if arr.ndim != 1:
            arr = arr.ravel()
        values = ravel(values)
        axis = arr.ndim - 1
    return concatenate((arr, values), axis=axis)
Esempio n. 19
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    Takes a sequence of arrays and stack them along the third axis
    to make a single array. Rebuilds arrays divided by `dsplit`.
    This is a simple way to stack 2D arrays (images) into a single
    3D array for processing.

    This function continues to be supported for backward compatibility, but
    you should prefer ``np.concatenate`` or ``np.stack``. The ``np.stack``
    function was added in NumPy 1.10.

    Parameters
    ----------
    tup : sequence of arrays
        Arrays to stack. All of them must have the same shape along all
        but the third axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=2)`` if `tup` contains arrays that
    are at least 3-dimensional.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Esempio n. 20
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    This is equivalent to concatenation along the third axis after 2-D arrays
    of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
    `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
    `dsplit`.

    This function makes most sense for arrays with up to 3 dimensions. For
    instance, for pixel-data with a height (first axis), width (second axis),
    and r/g/b channels (third axis). The functions `concatenate`, `stack` and
    `block` provide more general stacking and concatenation operations.

    Parameters
    ----------
    tup : sequence of arrays
        The arrays must have the same shape along all but the third axis.
        1-D or 2-D arrays must have the same shape.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays, will be at least 3-D.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    if not overrides.ARRAY_FUNCTION_ENABLED:
        # raise warning if necessary
        _arrays_for_stack_dispatcher(tup, stacklevel=2)

    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Esempio n. 21
0
def fast_hstack(tup):
    """
    Stack arrays in sequence horizontally (column wise).
    Faster version of hstack (traditional hstack calls asanyarray too many times)
    :param tup Collection[array]: input arrays in a tuple(see hstack)
    :return array: stacked array see hstack
    """
    arrays = []
    for a in tup:
        assert isinstance(a, np.ndarray)
        # this is fast implementation of atleast_1d for arrays
        if len(a.shape) == 0:
            a = a.reshape(1)
        arrays.append(a)

    # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
    if arrays[0].ndim == 1:
        return concatenate(arrays, 0)
    else:
        return concatenate(arrays, 1)
Esempio n. 22
0
 def __setitem__(self, key, val):
     ind = self.order - key
     if key < 0:
         raise ValueError, "Does not support negative powers."
     if key > self.order:
         zr = NX.zeros(key - self.order, self.coeffs.dtype)
         self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
         self.__dict__['order'] = key
         ind = 0
     self.__dict__['coeffs'][ind] = val
     return
Esempio n. 23
0
 def __setitem__(self, key, val):
     ind = self.order - key
     if key < 0:
         raise ValueError, "Does not support negative powers."
     if key > self.order:
         zr = NX.zeros(key-self.order, self.coeffs.dtype)
         self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
         self.__dict__['order'] = key
         ind = 0
     self.__dict__['coeffs'][ind] = val
     return
Esempio n. 24
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    This is equivalent to concatenation along the third axis after 2-D arrays
    of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
    `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
    `dsplit`.

    This function makes most sense for arrays with up to 3 dimensions. For
    instance, for pixel-data with a height (first axis), width (second axis),
    and r/g/b channels (third axis). The functions `concatenate`, `stack` and
    `block` provide more general stacking and concatenation operations.

    Parameters
    ----------
    tup : sequence of arrays
        The arrays must have the same shape along all but the third axis.
        1-D or 2-D arrays must have the same shape.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays, will be at least 3-D.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    _warn_for_nonsequence(tup)
    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Esempio n. 25
0
def polyadd(a1, a2):
    """
    Returns sum of two polynomials.

    Returns sum of polynomials; `a1` + `a2`.  Input polynomials are
    represented as an array_like sequence of terms or a poly1d object.

    Parameters
    ----------
    a1 : {array_like, poly1d}
        Polynomial as sequence of terms.
    a2 : {array_like, poly1d}
        Polynomial as sequence of terms.

    Returns
    -------
    out : {ndarray, poly1d}
        Array representing the polynomial terms.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 26
0
def polyadd(a1, a2):
    """
    Returns sum of two polynomials.

    Returns sum of polynomials; `a1` + `a2`.  Input polynomials are
    represented as an array_like sequence of terms or a poly1d object.

    Parameters
    ----------
    a1 : {array_like, poly1d}
        Polynomial as sequence of terms.
    a2 : {array_like, poly1d}
        Polynomial as sequence of terms.

    Returns
    -------
    out : {ndarray, poly1d}
        Array representing the polynomial terms.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
Esempio n. 27
0
def vstack(tup):
    """
    Stack arrays in sequence vertically (row wise).

    Take a sequence of arrays and stack them vertically to make a single
    array. Rebuild arrays divided by `vsplit`.

    Parameters
    ----------
    tup : sequence of ndarrays
        Tuple containing arrays to be stacked. The arrays must have the same
        shape along all but the first axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack : Stack arrays in sequence horizontally (column wise).
    dstack : Stack arrays in sequence depth wise (along third dimension).
    concatenate : Join a sequence of arrays together.
    vsplit : Split array into a list of multiple sub-arrays vertically.


    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=0)``

    Examples
    --------
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])

    """
    return _nx.concatenate(map(atleast_2d, tup), 0)
Esempio n. 28
0
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError as e:
                    raise NameError(f"name {col!r} is not defined") from None

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0)
Esempio n. 29
0
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col, ))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0)
Esempio n. 30
0
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0)
Esempio n. 31
0
def vstack(tup):
    """
    Stack arrays in sequence vertically (row wise).

    Take a sequence of arrays and stack them vertically to make a single
    array. Rebuild arrays divided by `vsplit`.

    Parameters
    ----------
    tup : sequence of ndarrays
        Tuple containing arrays to be stacked. The arrays must have the same
        shape along all but the first axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack : Stack arrays in sequence horizontally (column wise).
    dstack : Stack arrays in sequence depth wise (along third dimension).
    concatenate : Join a sequence of arrays together.
    vsplit : Split array into a list of multiple sub-arrays vertically.


    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=0)``

    Examples
    --------
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])

    """
    return _nx.concatenate(map(atleast_2d,tup),0)
Esempio n. 32
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    Takes a sequence of arrays and stack them along the third axis
    to make a single array. Rebuilds arrays divided by `dsplit`.
    This is a simple way to stack 2D arrays (images) into a single
    3D array for processing.

    Parameters
    ----------
    tup : sequence of arrays
        Arrays to stack. All of them must have the same shape along all
        but the third axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=2)``.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Esempio n. 33
0
def dstack(tup):
    """
    Stack arrays in sequence depth wise (along third axis).

    Takes a sequence of arrays and stack them along the third axis
    to make a single array. Rebuilds arrays divided by `dsplit`.
    This is a simple way to stack 2D arrays (images) into a single
    3D array for processing.

    Parameters
    ----------
    tup : sequence of arrays
        Arrays to stack. All of them must have the same shape along all
        but the third axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack along first axis.
    hstack : Stack along second axis.
    concatenate : Join a sequence of arrays along an existing axis.
    dsplit : Split array along third axis.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=2)``.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.dstack((a,b))
    array([[[1, 2],
            [2, 3],
            [3, 4]]])

    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.dstack((a,b))
    array([[[1, 2]],
           [[2, 3]],
           [[3, 4]]])

    """
    return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
Esempio n. 34
0
def cov(m, y=None, rowvar=1, bias=0):
    """Estimate the covariance matrix.

    If m is a vector, return the variance.  For matrices return the
    covariance matrix.

    If y is given it is treated as an additional (set of)
    variable(s).

    Normalization is by (N-1) where N is the number of observations
    (unbiased estimate).  If bias is 1 then normalization is by N.

    If rowvar is non-zero (default), then each row is a variable with
    observations in the columns, otherwise each column
    is a variable and the observations are in the rows.
    """

    X = array(m, ndmin=2, dtype=float)
    if X.shape[0] == 1:
        rowvar = 1
    if rowvar:
        axis = 0
        tup = (slice(None),newaxis)
    else:
        axis = 1
        tup = (newaxis, slice(None))


    if y is not None:
        y = array(y, copy=False, ndmin=2, dtype=float)
        X = concatenate((X,y),axis)

    X -= X.mean(axis=1-axis)[tup]
    if rowvar:
        N = X.shape[1]
    else:
        N = X.shape[0]

    if bias:
        fact = N*1.0
    else:
        fact = N-1.0

    if not rowvar:
        return (dot(X.T, X.conj()) / fact).squeeze()
    else:
        return (dot(X, X.T.conj()) / fact).squeeze()
Esempio n. 35
0
def cov(x, y=None, rowvar=True, bias=False, strict=False):
    """
    Estimate the covariance matrix.

    If x is a vector, return the variance.  For matrices, returns the covariance 
    matrix.

    If y is given, it is treated as an additional (set of) variable(s).

    Normalization is by (N-1) where N is the number of observations (unbiased 
    estimate).  If bias is True then normalization is by N.

    If rowvar is non-zero (default), then each row is a variable with observations 
    in the columns, otherwise each column is a variable  and the observations  are 
    in the rows.
    
    If strict is True, masked values are propagated: if a masked value appears in 
    a row or column, the whole row or column is considered masked.
    """
    X = narray(x, ndmin=2, subok=True, dtype=float)
    if X.shape[0] == 1:
        rowvar = True
    if rowvar:
        axis = 0
        tup = (slice(None),None)
    else:
        axis = 1
        tup = (None, slice(None))
    #
    if y is not None:
        y = narray(y, copy=False, ndmin=2, subok=True, dtype=float)
        X = concatenate((X,y),axis)
    #
    X -= X.mean(axis=1-axis)[tup]
    n = X.count(1-axis)
    #
    if bias:
        fact = n*1.0
    else:
        fact = n-1.0
    #
    if not rowvar:
        return (dot(X.T, X.conj(), strict=False) / fact).squeeze()
    else:
        return (dot(X, X.T.conj(), strict=False) / fact).squeeze()
Esempio n. 36
0
def fast_vstack(tup):
    """
    Stack arrays in sequence vertically (row wise).
    Faster version of vstack (traditional vstack calls asanyarray too many times)
    :param tup Collection[array]: input arrays in a tuple(see vstack)
    :return array: stacked array see vstack
    """
    arrays = []
    for a in tup:
        assert isinstance(a, np.ndarray)
        # this is fast implementation of atleast_2d for arrays
        if len(a.shape) == 0:
            a = a.reshape(1, 1)
        elif len(a.shape) == 1:
            a = a[np.newaxis, :]

        arrays.append(a)
    return concatenate(arrays, 0)
Esempio n. 37
0
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack, vstack, concatenate

    Notes
    -----
    This function is equivalent to ``np.vstack(tup).T``.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1)
Esempio n. 38
0
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    if not overrides.ARRAY_FUNCTION_ENABLED:
        # raise warning if necessary
        _arrays_for_stack_dispatcher(tup, stacklevel=2)

    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1)
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack, vstack, concatenate

    Notes
    -----
    This function is equivalent to ``np.vstack(tup).T``.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v,copy=False,subok=True)
        if arr.ndim < 2:
            arr = array(arr,copy=False,subok=True,ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays,1)
Esempio n. 40
0
def vstack(tup):
    """
    Stack arrays vertically.

    `vstack` can be used to rebuild arrays divided by `vsplit`.

    Parameters
    ----------
    tup : sequence of arrays
        Tuple containing arrays to be stacked.  The arrays must have the same
        shape along all but the first axis.

    See Also
    --------
    array_split : Split an array into a list of multiple sub-arrays of
                  near-equal size.
    split : Split array into a list of multiple sub-arrays of equal size.
    vsplit : Split array into a list of multiple sub-arrays vertically.
    dsplit : Split array into a list of multiple sub-arrays along the 3rd axis
             (depth).
    concatenate : Join arrays together.
    hstack : Stack arrays in sequence horizontally (column wise).
    dstack : Stack arrays in sequence depth wise (along third dimension).

    Examples
    --------
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])
    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])

    """
    return _nx.concatenate(map(atleast_2d, tup), 0)
Esempio n. 41
0
def hstack(tup):
    """
    Stack arrays in sequence horizontally (column wise)

    Take a sequence of arrays and stack them horizontally to make
    a single array. Rebuild arrays divided by ``hsplit``.

    Parameters
    ----------
    tup : sequence of ndarrays
        All arrays must have the same shape along all but the second axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    vstack : Stack along first axis.
    dstack : Stack along third axis.
    concatenate : Join arrays.
    hsplit : Split array along second axis.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=1)``

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.hstack((a,b))
    array([1, 2, 3, 2, 3, 4])
    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.hstack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    return _nx.concatenate(map(atleast_1d, tup), 1)
Esempio n. 42
0
def hstack(tup):
    """
    Stack arrays in sequence horizontally (column wise).

    Take a sequence of arrays and stack them horizontally to make
    a single array. Rebuild arrays divided by ``hsplit``.

    Parameters
    ----------
    tup : sequence of ndarrays
        All arrays must have the same shape along all but the second axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    vstack : Stack arrays in sequence vertically (row wise).
    dstack : Stack arrays in sequence depth wise (along third axis).
    concatenate : Join a sequence of arrays together.
    hsplit : Split array along second axis.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=1)``

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.hstack((a,b))
    array([1, 2, 3, 2, 3, 4])
    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.hstack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    return _nx.concatenate(map(atleast_1d,tup),1)
Esempio n. 43
0
def unique(x):
    """Return sorted unique items from an array or sequence.

    Example:
    >>> unique([5,2,4,0,4,4,2,2,1])
    array([0, 1, 2, 4, 5])

    """
    try:
        tmp = x.flatten()
        if tmp.size == 0:
            return tmp
        tmp.sort()
        idx = concatenate(([True], tmp[1:] != tmp[:-1]))
        return tmp[idx]
    except AttributeError:
        items = list(set(x))
        items.sort()
        return asarray(items)
def unique(x):
    """Return sorted unique items from an array or sequence.

    Example:
    >>> unique([5,2,4,0,4,4,2,2,1])
    array([0, 1, 2, 4, 5])

    """
    try:
        tmp = x.flatten()
        if tmp.size == 0:
            return tmp
        tmp.sort()
        idx = concatenate(([True],tmp[1:]!=tmp[:-1]))
        return tmp[idx]
    except AttributeError:
        items = list(set(x))
        items.sort()
        return asarray(items)
Esempio n. 45
0
    def _stack(arrays, axis=0):
        arrays = [np.asanyarray(arr) for arr in arrays]
        if not arrays:
            raise ValueError('need at least one array to stack')

        shapes = set(arr.shape for arr in arrays)
        if len(shapes) != 1:
            raise ValueError('all input arrays must have the same shape')

        result_ndim = arrays[0].ndim + 1
        if not -result_ndim <= axis < result_ndim:
            msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
            raise np.IndexError(msg)
        if axis < 0:
            axis += result_ndim

        sl = (slice(None),) * axis + (numeric.newaxis,)
        expanded_arrays = [arr[sl] for arr in arrays]
        return numeric.concatenate(expanded_arrays, axis=axis)
Esempio n. 46
0
def stack(arrays, axis=0):
    arrays = [np.asanyarray(arr) for arr in arrays]
    if not arrays:
        raise ValueError('need at least one array to stack')

    shapes = set(arr.shape for arr in arrays)
    if len(shapes) != 1:
        raise ValueError('all input arrays must have the same shape')

    result_ndim = arrays[0].ndim + 1
    if not -result_ndim <= axis < result_ndim:
        msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
        raise IndexError(msg)
    if axis < 0:
        axis += result_ndim

    sl = (slice(None), ) * axis + (_nx.newaxis, )
    expanded_arrays = [arr[sl] for arr in arrays]
    return _nx.concatenate(expanded_arrays, axis=axis)
Esempio n. 47
0
    def transform(self, positions, R_i=None, t_i=None, s_i=None, flip=False):
        """
        Return subclusters with (randomly) rotated translated and scaled
        positions. If R_i, s_i or t_i is given then that part of transformation
        is not random.

        """

        for sub in positions:
            t = t_i or rand(2)*10
            s = s_i or rand()*2
            if R_i is None:
                th = 2*pi*rand()
                # ccw
                R = array([[cos(th), -sin(th)], [sin(th), cos(th)]])
            else:
                R = R_i
            if flip:
                #TODO: make R with flip
                pass

            for node, pos in sub.items():
                sub[node] = concatenate((dot(dot(s, R), pos[:2])+t, [nan]))
Esempio n. 48
0
    def transform(self, positions, R_i=None, t_i=None, s_i=None, flip=False):
        """
        Return subclusters with (randomly) rotated translated and scaled
        positions. If R_i, s_i or t_i is given then that part of transformation
        is not random.

        """

        for sub in positions:
            t = t_i or rand(2) * 10
            s = s_i or rand() * 2
            if R_i is None:
                th = 2 * pi * rand()
                # ccw
                R = array([[cos(th), -sin(th)], [sin(th), cos(th)]])
            else:
                R = R_i
            if flip:
                #TODO: make R with flip
                pass

            for node, pos in sub.items():
                sub[node] = concatenate((dot(dot(s, R), pos[:2]) + t, [nan]))
Esempio n. 49
0
def bmat(obj, ldict=None, gdict=None):
    """
    Build a matrix object from a string, nested sequence, or array.

    Parameters
    ----------
    obj : str or array_like
        Input data.  Names of variables in the current scope may be
        referenced, even if `obj` is a string.
    ldict : dict, optional
        A dictionary that replaces local operands in current frame.
        Ignored if `obj` is not a string or `gdict` is `None`.
    gdict : dict, optional
        A dictionary that replaces global operands in current frame.
        Ignored if `obj` is not a string.

    Returns
    -------
    out : matrix
        Returns a matrix object, which is a specialized 2-D array.

    See Also
    --------
    matrix

    Examples
    --------
    >>> A = np.mat('1 1; 1 1')
    >>> B = np.mat('2 2; 2 2')
    >>> C = np.mat('3 4; 5 6')
    >>> D = np.mat('7 8; 9 0')

    All the following expressions construct the same block matrix:

    >>> np.bmat([[A, B], [C, D]])
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])
    >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])
    >>> np.bmat('A,B; C,D')
    matrix([[1, 1, 2, 2],
            [1, 1, 2, 2],
            [3, 4, 7, 8],
            [5, 6, 9, 0]])

    """
    if isinstance(obj, str):
        if gdict is None:
            # get previous frame
            frame = sys._getframe().f_back
            glob_dict = frame.f_globals
            loc_dict = frame.f_locals
        else:
            glob_dict = gdict
            loc_dict = ldict

        return matrix(_from_string(obj, glob_dict, loc_dict))

    if isinstance(obj, (tuple, list)):
        # [[A,B],[C,D]]
        arr_rows = []
        for row in obj:
            if isinstance(row, N.ndarray):  # not 2-d
                return matrix(concatenate(obj, axis=-1))
            else:
                arr_rows.append(concatenate(row, axis=-1))
        return matrix(concatenate(arr_rows, axis=0))
    if isinstance(obj, N.ndarray):
        return matrix(obj)
Esempio n. 50
0
def kron(a, b):
    """
    Kronecker product of two arrays.

    Computes the Kronecker product, a composite array made of blocks of the
    second array scaled by the first.

    Parameters
    ----------
    a, b : array_like

    Returns
    -------
    out : ndarray

    See Also
    --------
    outer : The outer product

    Notes
    -----
    The function assumes that the number of dimensions of `a` and `b`
    are the same, if necessary prepending the smallest with ones.
    If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
    the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
    The elements are products of elements from `a` and `b`, organized
    explicitly by::

        kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

    where::

        kt = it * st + jt,  t = 0,...,N

    In the common 2-D case (N=1), the block structure can be visualized::

        [[ a[0,0]*b,   a[0,1]*b,  ... , a[0,-1]*b  ],
         [  ...                              ...   ],
         [ a[-1,0]*b,  a[-1,1]*b, ... , a[-1,-1]*b ]]


    Examples
    --------
    >>> np.kron([1,10,100], [5,6,7])
    array([  5,   6,   7,  50,  60,  70, 500, 600, 700])
    >>> np.kron([5,6,7], [1,10,100])
    array([  5,  50, 500,   6,  60, 600,   7,  70, 700])

    >>> np.kron(np.eye(2), np.ones((2,2)))
    array([[ 1.,  1.,  0.,  0.],
           [ 1.,  1.,  0.,  0.],
           [ 0.,  0.,  1.,  1.],
           [ 0.,  0.,  1.,  1.]])

    >>> a = np.arange(100).reshape((2,5,2,5))
    >>> b = np.arange(24).reshape((2,3,4))
    >>> c = np.kron(a,b)
    >>> c.shape
    (2, 10, 6, 20)
    >>> I = (1,3,0,2)
    >>> J = (0,2,1)
    >>> J1 = (0,) + J             # extend to ndim=4
    >>> S1 = (1,) + b.shape
    >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
    >>> c[K] == a[I]*b[J]
    True

    """
    b = asanyarray(b)
    a = array(a, copy=False, subok=True, ndmin=b.ndim)
    ndb, nda = b.ndim, a.ndim
    if (nda == 0 or ndb == 0):
        return _nx.multiply(a, b)
    as_ = a.shape
    bs = b.shape
    if not a.flags.contiguous:
        a = reshape(a, as_)
    if not b.flags.contiguous:
        b = reshape(b, bs)
    nd = ndb
    if (ndb != nda):
        if (ndb > nda):
            as_ = (1, ) * (ndb - nda) + as_
        else:
            bs = (1, ) * (nda - ndb) + bs
            nd = nda
    result = outer(a, b).reshape(as_ + bs)
    axis = nd - 1
    for _ in range(nd):
        result = concatenate(result, axis=axis)
    wrapper = get_array_prepare(a, b)
    if wrapper is not None:
        result = wrapper(result)
    wrapper = get_array_wrap(a, b)
    if wrapper is not None:
        result = wrapper(result)
    return result
Esempio n. 51
0
def polyint(p, m=1, k=None):
    """
    Return an antiderivative (indefinite integral) of a polynomial.

    The returned order `m` antiderivative `P` of polynomial `p` satisfies
    :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
    integration constants `k`. The constants determine the low-order
    polynomial part

    .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}

    of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.

    Parameters
    ----------
    p : array_like or poly1d
        Polynomial to differentiate.
        A sequence is interpreted as polynomial coefficients, see `poly1d`.
    m : int, optional
        Order of the antiderivative. (Default: 1)
    k : list of `m` scalars or scalar, optional
        Integration constants. They are given in the order of integration:
        those corresponding to highest-order terms come first.

        If ``None`` (default), all constants are assumed to be zero.
        If `m = 1`, a single scalar can be given instead of a list.

    See Also
    --------
    polyder : derivative of a polynomial
    poly1d.integ : equivalent method

    Examples
    --------
    The defining property of the antiderivative:

    >>> p = np.poly1d([1,1,1])
    >>> P = np.polyint(p)
    >>> P
    poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ])
    >>> np.polyder(P) == p
    True

    The integration constants default to zero, but can be specified:

    >>> P = np.polyint(p, 3)
    >>> P(0)
    0.0
    >>> np.polyder(P)(0)
    0.0
    >>> np.polyder(P, 2)(0)
    0.0
    >>> P = np.polyint(p, 3, k=[6,5,3])
    >>> P
    poly1d([ 0.01666667,  0.04166667,  0.16666667,  3. ,  5. ,  3. ])

    Note that 3 = 6 / 2!, and that the constants are given in the order of
    integrations. Constant of the highest-order polynomial term comes first:

    >>> np.polyder(P, 2)(0)
    6.0
    >>> np.polyder(P, 1)(0)
    5.0
    >>> P(0)
    3.0

    """
    m = int(m)
    if m < 0:
        raise ValueError("Order of integral must be positive (see polyder)")
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0] * NX.ones(m, float)
    if len(k) < m:
        raise ValueError(
            "k must be a scalar or a rank-1 array of length 1 or >m.")

    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    if m == 0:
        if truepoly:
            return poly1d(p)
        return p
    else:
        # Note: this must work also with object and integer arrays
        y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
        val = polyint(y, m - 1, k=k[1:])
        if truepoly:
            return poly1d(val)
        return val
Esempio n. 52
0
def polyint(p, m=1, k=None):
    """
    Return an antiderivative (indefinite integral) of a polynomial.

    The returned order `m` antiderivative `P` of polynomial `p` satisfies
    :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
    integration constants `k`. The constants determine the low-order
    polynomial part

    .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1}

    of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.

    Parameters
    ----------
    p : {array_like, poly1d}
        Polynomial to differentiate.
        A sequence is interpreted as polynomial coefficients, see `poly1d`.
    m : int, optional
        Order of the antiderivative. (Default: 1)
    k : {None, list of `m` scalars, scalar}, optional
        Integration constants. They are given in the order of integration:
        those corresponding to highest-order terms come first.

        If ``None`` (default), all constants are assumed to be zero.
        If `m = 1`, a single scalar can be given instead of a list.

    See Also
    --------
    polyder : derivative of a polynomial
    poly1d.integ : equivalent method

    Examples
    --------
    The defining property of the antiderivative:

    >>> p = np.poly1d([1,1,1])
    >>> P = np.polyint(p)
    >>> P
    poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ])
    >>> np.polyder(P) == p
    True

    The integration constants default to zero, but can be specified:

    >>> P = np.polyint(p, 3)
    >>> P(0)
    0.0
    >>> np.polyder(P)(0)
    0.0
    >>> np.polyder(P, 2)(0)
    0.0
    >>> P = np.polyint(p, 3, k=[6,5,3])
    >>> P
    poly1d([ 0.01666667,  0.04166667,  0.16666667,  3. ,  5. ,  3. ])

    Note that 3 = 6 / 2!, and that the constants are given in the order of
    integrations. Constant of the highest-order polynomial term comes first:

    >>> np.polyder(P, 2)(0)
    6.0
    >>> np.polyder(P, 1)(0)
    5.0
    >>> P(0)
    3.0

    """
    m = int(m)
    if m < 0:
        raise ValueError("Order of integral must be positive (see polyder)")
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError(
              "k must be a scalar or a rank-1 array of length 1 or >m.")

    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    if m == 0:
        if truepoly:
            return poly1d(p)
        return p
    else:
        # Note: this must work also with object and integer arrays
        y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]]))
        val = polyint(y, m - 1, k=k[1:])
        if truepoly:
            return poly1d(val)
        return val
Esempio n. 53
0
    def __getitem__(self, key):
        trans1d = self.trans1d
        ndmin = self.ndmin
        if isinstance(key, str):
            frame = sys._getframe().f_back
            mymat = matrix.bmat(key, frame.f_globals, frame.f_locals)
            return mymat
        if type(key) is not tuple:
            key = (key, )
        objs = []
        scalars = []
        arraytypes = []
        scalartypes = []
        for k in range(len(key)):
            scalar = False
            if type(key[k]) is slice:
                step = key[k].step
                start = key[k].start
                stop = key[k].stop
                if start is None: start = 0
                if step is None:
                    step = 1
                if isinstance(step, complex):
                    size = int(abs(step))
                    newobj = function_base.linspace(start, stop, num=size)
                else:
                    newobj = _nx.arange(start, stop, step)
                if ndmin > 1:
                    newobj = array(newobj, copy=False, ndmin=ndmin)
                    if trans1d != -1:
                        newobj = newobj.swapaxes(-1, trans1d)
            elif isinstance(key[k], str):
                if k != 0:
                    raise ValueError("special directives must be the "
                                     "first entry.")
                key0 = key[0]
                if key0 in 'rc':
                    self.matrix = True
                    self.col = (key0 == 'c')
                    continue
                if ',' in key0:
                    vec = key0.split(',')
                    try:
                        self.axis, ndmin = \
                                   [int(x) for x in vec[:2]]
                        if len(vec) == 3:
                            trans1d = int(vec[2])
                        continue
                    except:
                        raise ValueError("unknown special directive")
                try:
                    self.axis = int(key[k])
                    continue
                except (ValueError, TypeError):
                    raise ValueError("unknown special directive")
            elif type(key[k]) in ScalarType:
                newobj = array(key[k], ndmin=ndmin)
                scalars.append(k)
                scalar = True
                scalartypes.append(newobj.dtype)
            else:
                newobj = key[k]
                if ndmin > 1:
                    tempobj = array(newobj, copy=False, subok=True)
                    newobj = array(newobj, copy=False, subok=True, ndmin=ndmin)
                    if trans1d != -1 and tempobj.ndim < ndmin:
                        k2 = ndmin - tempobj.ndim
                        if (trans1d < 0):
                            trans1d += k2 + 1
                        defaxes = range(ndmin)
                        k1 = trans1d
                        axes = defaxes[:k1] + defaxes[k2:] + \
                               defaxes[k1:k2]
                        newobj = newobj.transpose(axes)
                    del tempobj
            objs.append(newobj)
            if not scalar and isinstance(newobj, _nx.ndarray):
                arraytypes.append(newobj.dtype)

        #  Esure that scalars won't up-cast unless warranted
        final_dtype = find_common_type(arraytypes, scalartypes)
        if final_dtype is not None:
            for k in scalars:
                objs[k] = objs[k].astype(final_dtype)

        res = _nx.concatenate(tuple(objs), axis=self.axis)
        return self._retval(res)
Esempio n. 54
0
def histogram(a, bins=10, range=None, normed=False):
    """Compute the histogram from a set of data.

    Parameters:

        a : array
            The data to histogram. n-D arrays will be flattened.

        bins : int or sequence of floats
            If an int, then the number of equal-width bins in the given range.
            Otherwise, a sequence of the lower bound of each bin.

        range : (float, float)
            The lower and upper range of the bins. If not provided, then
            (a.min(), a.max()) is used. Values outside of this range are
            allocated to the closest bin.

        normed : bool
            If False, the result array will contain the number of samples in
            each bin.  If True, the result array is the value of the
            probability *density* function at the bin normalized such that the
            *integral* over the range is 1. Note that the sum of all of the
            histogram values will not usually be 1; it is not a probability
            *mass* function.

    Returns:

        hist : array
            The values of the histogram. See `normed` for a description of the
            possible semantics.

        lower_edges : float array
            The lower edges of each bin.

    SeeAlso:

        histogramdd

    """
    a = asarray(a).ravel()

    if (range is not None):
        mn, mx = range
        if (mn > mx):
            raise AttributeError, 'max must be larger than min in range parameter.'

    if not iterable(bins):
        if range is None:
            range = (a.min(), a.max())
        mn, mx = [mi + 0.0 for mi in range]
        if mn == mx:
            mn -= 0.5
            mx += 0.5
        bins = linspace(mn, mx, bins, endpoint=False)
    else:
        if (any(bins[1:] - bins[:-1] < 0)):
            raise AttributeError, 'bins must increase monotonically.'

    # best block size probably depends on processor cache size
    block = 65536
    n = sort(a[:block]).searchsorted(bins)
    for i in xrange(block, a.size, block):
        n += sort(a[i:i + block]).searchsorted(bins)
    n = concatenate([n, [len(a)]])
    n = n[1:] - n[:-1]

    if normed:
        db = bins[1] - bins[0]
        return 1.0 / (a.size * db) * n, bins
    else:
        return n, bins
def kron(a,b):
    """
    Kronecker product of two arrays.

    Computes the Kronecker product, a composite array made of blocks of the
    second array scaled by the first.

    Parameters
    ----------
    a, b : array_like

    Returns
    -------
    out : ndarray

    See Also
    --------

    outer : The outer product

    Notes
    -----

    The function assumes that the number of dimenensions of `a` and `b`
    are the same, if necessary prepending the smallest with ones.
    If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
    the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
    The elements are products of elements from `a` and `b`, organized
    explicitly by::

        kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

    where::

        kt = it * st + jt,  t = 0,...,N

    In the common 2-D case (N=1), the block structure can be visualized::

        [[ a[0,0]*b,   a[0,1]*b,  ... , a[0,-1]*b  ],
         [  ...                              ...   ],
         [ a[-1,0]*b,  a[-1,1]*b, ... , a[-1,-1]*b ]]


    Examples
    --------
    >>> np.kron([1,10,100], [5,6,7])
    array([  5,   6,   7,  50,  60,  70, 500, 600, 700])
    >>> np.kron([5,6,7], [1,10,100])
    array([  5,  50, 500,   6,  60, 600,   7,  70, 700])

    >>> np.kron(np.eye(2), np.ones((2,2)))
    array([[ 1.,  1.,  0.,  0.],
           [ 1.,  1.,  0.,  0.],
           [ 0.,  0.,  1.,  1.],
           [ 0.,  0.,  1.,  1.]])

    >>> a = np.arange(100).reshape((2,5,2,5))
    >>> b = np.arange(24).reshape((2,3,4))
    >>> c = np.kron(a,b)
    >>> c.shape
    (2, 10, 6, 20)
    >>> I = (1,3,0,2)
    >>> J = (0,2,1)
    >>> J1 = (0,) + J             # extend to ndim=4
    >>> S1 = (1,) + b.shape
    >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
    >>> c[K] == a[I]*b[J]
    True

    """
    b = asanyarray(b)
    a = array(a,copy=False,subok=True,ndmin=b.ndim)
    ndb, nda = b.ndim, a.ndim
    if (nda == 0 or ndb == 0):
        return _nx.multiply(a,b)
    as_ = a.shape
    bs = b.shape
    if not a.flags.contiguous:
        a = reshape(a, as_)
    if not b.flags.contiguous:
        b = reshape(b, bs)
    nd = ndb
    if (ndb != nda):
        if (ndb > nda):
            as_ = (1,)*(ndb-nda) + as_
        else:
            bs = (1,)*(nda-ndb) + bs
            nd = nda
    result = outer(a,b).reshape(as_+bs)
    axis = nd-1
    for _ in range(nd):
        result = concatenate(result, axis=axis)
    wrapper = get_array_prepare(a, b)
    if wrapper is not None:
        result = wrapper(result)
    wrapper = get_array_wrap(a, b)
    if wrapper is not None:
        result = wrapper(result)
    return result
Esempio n. 56
0
def polyadd(a1, a2):
    """
    Find the sum of two polynomials.

    .. note::
       This forms part of the old polynomial API. Since version 1.4, the
       new polynomial API defined in `numpy.polynomial` is preferred.
       A summary of the differences can be found in the
       :doc:`transition guide </reference/routines.polynomials>`.

    Returns the polynomial resulting from the sum of two input polynomials.
    Each input must be either a poly1d object or a 1D sequence of polynomial
    coefficients, from highest to lowest degree.

    Parameters
    ----------
    a1, a2 : array_like or poly1d object
        Input polynomials.

    Returns
    -------
    out : ndarray or poly1d object
        The sum of the inputs. If either input is a poly1d object, then the
        output is also a poly1d object. Otherwise, it is a 1D array of
        polynomial coefficients from highest to lowest degree.

    See Also
    --------
    poly1d : A one-dimensional polynomial class.
    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

    Examples
    --------
    >>> np.polyadd([1, 2], [9, 5, 4])
    array([9, 6, 6])

    Using poly1d objects:

    >>> p1 = np.poly1d([1, 2])
    >>> p2 = np.poly1d([9, 5, 4])
    >>> print(p1)
    1 x + 2
    >>> print(p2)
       2
    9 x + 5 x + 4
    >>> print(np.polyadd(p1, p2))
       2
    9 x + 6 x + 6

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val