def test_tostring_c(self):
        language = Language.C
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')
        n = as_number(123)

        assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x'
        assert Expr(Op.FACTORS, {
            x + y: 2
        }).tostring(language=language) == '(x + y) * (x + y)'
        assert Expr(Op.FACTORS, {
            x: 12
        }).tostring(language=language) == 'pow(x, 12)'

        assert as_apply(ArithOp.DIV, x,
                        y).tostring(language=language) == 'x / y'
        assert as_apply(ArithOp.DIV, x,
                        x + y).tostring(language=language) == 'x / (x + y)'
        assert as_apply(ArithOp.DIV, x - y, x +
                        y).tostring(language=language) == '(x - y) / (x + y)'
        assert (x + (x - y) / (x + y) +
                n).tostring(language=language) == '123 + x + (x - y) / (x + y)'

        assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)'
        assert as_eq(x, y).tostring(language=language) == 'x == y'
        assert as_ne(x, y).tostring(language=language) == 'x != y'
        assert as_lt(x, y).tostring(language=language) == 'x < y'
        assert as_le(x, y).tostring(language=language) == 'x <= y'
        assert as_gt(x, y).tostring(language=language) == 'x > y'
        assert as_ge(x, y).tostring(language=language) == 'x >= y'
Esempio n. 2
0
    def test_tostring_c(self):
        language = Language.C
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)

        assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x"
        assert (Expr(Op.FACTORS, {
            x + y: 2
        }).tostring(language=language) == "(x + y) * (x + y)")
        assert Expr(Op.FACTORS, {
            x: 12
        }).tostring(language=language) == "pow(x, 12)"

        assert as_apply(ArithOp.DIV, x,
                        y).tostring(language=language) == "x / y"
        assert (as_apply(ArithOp.DIV, x,
                         x + y).tostring(language=language) == "x / (x + y)")
        assert (as_apply(ArithOp.DIV, x - y, x +
                         y).tostring(language=language) == "(x - y) / (x + y)")
        assert (x + (x - y) / (x + y) +
                n).tostring(language=language) == "123 + x + (x - y) / (x + y)"

        assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)"
        assert as_eq(x, y).tostring(language=language) == "x == y"
        assert as_ne(x, y).tostring(language=language) == "x != y"
        assert as_lt(x, y).tostring(language=language) == "x < y"
        assert as_le(x, y).tostring(language=language) == "x <= y"
        assert as_gt(x, y).tostring(language=language) == "x > y"
        assert as_ge(x, y).tostring(language=language) == "x >= y"
    def test_tostring_fortran(self):
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')
        n = as_number(123)
        m = as_number(456)
        a = as_array((n, m))
        c = as_complex(n, m)

        assert str(x) == 'x'
        assert str(n) == '123'
        assert str(a) == '[123, 456]'
        assert str(c) == '(123, 456)'

        assert str(Expr(Op.TERMS, {x: 1})) == 'x'
        assert str(Expr(Op.TERMS, {x: 2})) == '2 * x'
        assert str(Expr(Op.TERMS, {x: -1})) == '-x'
        assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x'
        assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y'
        assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y'
        assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y'
        assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y'
        assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y'

        assert str(Expr(Op.FACTORS, {x: 1})) == 'x'
        assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2'
        assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1'
        assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2'
        assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y'
        assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3'

        v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
        assert str(v) == 'x ** 2 * (x + y) ** 3', str(v)
        v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
        assert str(v) == 'x ** 2 * (x * y) ** 3', str(v)

        assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()'
        assert str(Expr(Op.APPLY, ('f', (x, ), {}))) == 'f(x)'
        assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)'
        assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]'

        assert str(as_ternary(x, y, z)) == 'merge(y, z, x)'
        assert str(as_eq(x, y)) == 'x .eq. y'
        assert str(as_ne(x, y)) == 'x .ne. y'
        assert str(as_lt(x, y)) == 'x .lt. y'
        assert str(as_le(x, y)) == 'x .le. y'
        assert str(as_gt(x, y)) == 'x .gt. y'
        assert str(as_ge(x, y)) == 'x .ge. y'
Esempio n. 4
0
    def test_tostring_fortran(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)
        m = as_number(456)
        a = as_array((n, m))
        c = as_complex(n, m)

        assert str(x) == "x"
        assert str(n) == "123"
        assert str(a) == "[123, 456]"
        assert str(c) == "(123, 456)"

        assert str(Expr(Op.TERMS, {x: 1})) == "x"
        assert str(Expr(Op.TERMS, {x: 2})) == "2 * x"
        assert str(Expr(Op.TERMS, {x: -1})) == "-x"
        assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x"
        assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y"
        assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y"
        assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y"

        assert str(Expr(Op.FACTORS, {x: 1})) == "x"
        assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2"
        assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1"
        assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2"
        assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y"
        assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3"

        v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x + y) ** 3", str(v)
        v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x * y) ** 3", str(v)

        assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()"
        assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)"
        assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)"
        assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]"

        assert str(as_ternary(x, y, z)) == "merge(y, z, x)"
        assert str(as_eq(x, y)) == "x .eq. y"
        assert str(as_ne(x, y)) == "x .ne. y"
        assert str(as_lt(x, y)) == "x .lt. y"
        assert str(as_le(x, y)) == "x .le. y"
        assert str(as_gt(x, y)) == "x .gt. y"
        assert str(as_ge(x, y)) == "x .ge. y"
    def test_fromstring(self):

        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')
        f = as_symbol('f')
        s = as_string('"ABC"')
        t = as_string('"123"')
        a = as_array((x, y))

        assert fromstring('x') == x
        assert fromstring('+ x') == x
        assert fromstring('-  x') == -x
        assert fromstring('x + y') == x + y
        assert fromstring('x + 1') == x + 1
        assert fromstring('x * y') == x * y
        assert fromstring('x * 2') == x * 2
        assert fromstring('x / y') == x / y
        assert fromstring('x ** 2', language=Language.Python) == x**2
        assert fromstring('x ** 2 ** 3', language=Language.Python) == x**2**3
        assert fromstring('(x + y) * z') == (x + y) * z

        assert fromstring('f(x)') == f(x)
        assert fromstring('f(x,y)') == f(x, y)
        assert fromstring('f[x]') == f[x]
        assert fromstring('f[x][y]') == f[x][y]

        assert fromstring('"ABC"') == s
        assert normalize(
            fromstring('"ABC" // "123" ', language=Language.Fortran)) == s // t
        assert fromstring('f("ABC")') == f(s)
        assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND')

        assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)')
        assert fromstring('f((/x, y/))') == f(a)
        assert fromstring('(/(x+y)*z/)') == as_array(((x + y) * z, ))

        assert fromstring('123') == as_number(123)
        assert fromstring('123_2') == as_number(123, 2)
        assert fromstring('123_myintkind') == as_number(123, 'myintkind')

        assert fromstring('123.0') == as_number(123.0, 4)
        assert fromstring('123.0_4') == as_number(123.0, 4)
        assert fromstring('123.0_8') == as_number(123.0, 8)
        assert fromstring('123.0e0') == as_number(123.0, 4)
        assert fromstring('123.0d0') == as_number(123.0, 8)
        assert fromstring('123d0') == as_number(123.0, 8)
        assert fromstring('123e-0') == as_number(123.0, 4)
        assert fromstring('123d+0') == as_number(123.0, 8)
        assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind')
        assert fromstring('3E4') == as_number(30000.0, 4)

        assert fromstring('(1, 2)') == as_complex(1, 2)
        assert fromstring('(1e2, PI)') == as_complex(as_number(100.0),
                                                     as_symbol('PI'))

        assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2)))

        assert fromstring('POINT(x, y=1)') == as_apply(as_symbol('POINT'),
                                                       x,
                                                       y=as_number(1))
        assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))') ==
                as_apply(as_symbol('PERSON'),
                         name=as_string('"John"'),
                         age=as_number(50),
                         shape=as_array((as_number(34), as_number(23)))))

        assert fromstring('x?y:z') == as_ternary(x, y, z)

        assert fromstring('*x') == as_deref(x)
        assert fromstring('**x') == as_deref(as_deref(x))
        assert fromstring('&x') == as_ref(x)
        assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y)
        assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y)
        assert fromstring('*x * *y') == as_deref(x) * as_deref(y)
        assert fromstring('*x**y') == as_deref(x) * as_deref(y)

        assert fromstring('x == y') == as_eq(x, y)
        assert fromstring('x != y') == as_ne(x, y)
        assert fromstring('x < y') == as_lt(x, y)
        assert fromstring('x > y') == as_gt(x, y)
        assert fromstring('x <= y') == as_le(x, y)
        assert fromstring('x >= y') == as_ge(x, y)

        assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y)
        assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y)
        assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y)
        assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y)
        assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y)
        assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y)
    def test_sanity(self):
        x = as_symbol('x')
        y = as_symbol('y')
        z = as_symbol('z')

        assert x.op == Op.SYMBOL
        assert repr(x) == "Expr(Op.SYMBOL, 'x')"
        assert x == x
        assert x != y
        assert hash(x) is not None

        n = as_number(123)
        m = as_number(456)
        assert n.op == Op.INTEGER
        assert repr(n) == "Expr(Op.INTEGER, (123, 4))"
        assert n == n
        assert n != m
        assert hash(n) is not None

        fn = as_number(12.3)
        fm = as_number(45.6)
        assert fn.op == Op.REAL
        assert repr(fn) == "Expr(Op.REAL, (12.3, 4))"
        assert fn == fn
        assert fn != fm
        assert hash(fn) is not None

        c = as_complex(1, 2)
        c2 = as_complex(3, 4)
        assert c.op == Op.COMPLEX
        assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4)),"
                           " Expr(Op.INTEGER, (2, 4))))")
        assert c == c
        assert c != c2
        assert hash(c) is not None

        s = as_string("'123'")
        s2 = as_string('"ABC"')
        assert s.op == Op.STRING
        assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s)
        assert s == s
        assert s != s2

        a = as_array((n, m))
        b = as_array((n, ))
        assert a.op == Op.ARRAY
        assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4)),"
                           " Expr(Op.INTEGER, (456, 4))))")
        assert a == a
        assert a != b

        t = as_terms(x)
        u = as_terms(y)
        assert t.op == Op.TERMS
        assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})"
        assert t == t
        assert t != u
        assert hash(t) is not None

        v = as_factors(x)
        w = as_factors(y)
        assert v.op == Op.FACTORS
        assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})"
        assert v == v
        assert w != v
        assert hash(v) is not None

        t = as_ternary(x, y, z)
        u = as_ternary(x, z, y)
        assert t.op == Op.TERNARY
        assert t == t
        assert t != u
        assert hash(t) is not None

        e = as_eq(x, y)
        f = as_lt(x, y)
        assert e.op == Op.RELATIONAL
        assert e == e
        assert e != f
        assert hash(e) is not None
Esempio n. 7
0
    def test_fromstring(self):

        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        f = as_symbol("f")
        s = as_string('"ABC"')
        t = as_string('"123"')
        a = as_array((x, y))

        assert fromstring("x") == x
        assert fromstring("+ x") == x
        assert fromstring("-  x") == -x
        assert fromstring("x + y") == x + y
        assert fromstring("x + 1") == x + 1
        assert fromstring("x * y") == x * y
        assert fromstring("x * 2") == x * 2
        assert fromstring("x / y") == x / y
        assert fromstring("x ** 2", language=Language.Python) == x**2
        assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3
        assert fromstring("(x + y) * z") == (x + y) * z

        assert fromstring("f(x)") == f(x)
        assert fromstring("f(x,y)") == f(x, y)
        assert fromstring("f[x]") == f[x]
        assert fromstring("f[x][y]") == f[x][y]

        assert fromstring('"ABC"') == s
        assert (normalize(
            fromstring('"ABC" // "123" ',
                       language=Language.Fortran)) == s // t)
        assert fromstring('f("ABC")') == f(s)
        assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND")

        assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)")
        assert fromstring("f((/x, y/))") == f(a)
        assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, ))

        assert fromstring("123") == as_number(123)
        assert fromstring("123_2") == as_number(123, 2)
        assert fromstring("123_myintkind") == as_number(123, "myintkind")

        assert fromstring("123.0") == as_number(123.0, 4)
        assert fromstring("123.0_4") == as_number(123.0, 4)
        assert fromstring("123.0_8") == as_number(123.0, 8)
        assert fromstring("123.0e0") == as_number(123.0, 4)
        assert fromstring("123.0d0") == as_number(123.0, 8)
        assert fromstring("123d0") == as_number(123.0, 8)
        assert fromstring("123e-0") == as_number(123.0, 4)
        assert fromstring("123d+0") == as_number(123.0, 8)
        assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind")
        assert fromstring("3E4") == as_number(30000.0, 4)

        assert fromstring("(1, 2)") == as_complex(1, 2)
        assert fromstring("(1e2, PI)") == as_complex(as_number(100.0),
                                                     as_symbol("PI"))

        assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2)))

        assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"),
                                                       x,
                                                       y=as_number(1))
        assert fromstring(
            'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(
                as_symbol("PERSON"),
                name=as_string('"John"'),
                age=as_number(50),
                shape=as_array((as_number(34), as_number(23))),
            )

        assert fromstring("x?y:z") == as_ternary(x, y, z)

        assert fromstring("*x") == as_deref(x)
        assert fromstring("**x") == as_deref(as_deref(x))
        assert fromstring("&x") == as_ref(x)
        assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y)
        assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y)
        assert fromstring("*x * *y") == as_deref(x) * as_deref(y)
        assert fromstring("*x**y") == as_deref(x) * as_deref(y)

        assert fromstring("x == y") == as_eq(x, y)
        assert fromstring("x != y") == as_ne(x, y)
        assert fromstring("x < y") == as_lt(x, y)
        assert fromstring("x > y") == as_gt(x, y)
        assert fromstring("x <= y") == as_le(x, y)
        assert fromstring("x >= y") == as_ge(x, y)

        assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y)
        assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y)
        assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y)
        assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y)
        assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y)
        assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)